
The Emergence of the Object-SQL Database

A White Paper

Matisse Software Inc.

© 2003 MATISSE SOFTWARE INC., ALL RIGHTS RESERVED. Matisse is a registered trademark of Matisse Software
Inc. Other product or company names mentioned herein may be the trademarks of their respective owners.

Table of Contents

1. The Shift to Object Development 3
Object databases were a close fit, but... 3

Relational databases weren’t quite ready 4

The best of both worlds 4

2. Matisse: The Object Developer’s Database 4
Direct object management 4

UML support 4

SQL access 5

Performance 5

Scalability 5

Stored procedures, triggers and referential integrity 5

Standards compliance 5

3. Reducing the IT Burden 6
No log files 6

Atomatic tuning 6

Online parallel backup 6

No scheduled downtime 6

24x365 reliability 6

Dynamic schema evolution 6

4. The Safe Business Solution 7
Language independent 7

XML ready 7

Multimedia ready 7

5. Conclusion 8

With the acceptance of Java, the momentum for object-based
development has accelerated with no signs of slowing. Recently, a
report by IDC indicated that there are over 2.6 million profession-
al developers worldwide using C/C++ as their primary language
and over a million professional developers worldwide using Java
as their primary language. This means over 37% of all developers
worldwide are using these languages and the numbers continue
to grow.

In order to capitalize on the shift to object-development, database
vendors have tried to create database management systems that
provide a good foundation for object applications, but have largely
failed to meet the expectations of object developers, IT organiza-
tions, and corporate management. These databases fit into one
of two categories: object databases (ODBMS) and relational data-
bases (RDBMS) with object-relational mapping.

Object databases were a close fit, but...

Realizing the advantages of programming with objects, several
database vendors introduced first generation object databases in
the mid-90s. While directly designed and intended for objects, and
thereby better suited for object development, the early object
databases had numerous deficiencies that hurt ODBMSs chances
of being deemed worthy of serious deployment.

Ironically, one of the deficiencies (persistent objects) of the first
generation ODBMS systems wasn’t initially seen as a deficiency,
but instead hailed as the ideal solution for object developers. The
first generation ODBMS bypassed the need for O-R (object-rela-
tional) mapping by operating as an extension of the object pro-
gramming language. This allowed developers to create and store
persistent objects in the database simply by declaring them in
application code, without needing to use a separate database
interface or language. This is why object databases were also
referred to as persistent object stores.

Most of the ODBMS vendors used this transparent persistence
because objects could be mapped directly to the database, but
persistent objects came at a heavy price. The principal reasons
that ODBMSs failed to become the de-facto foundation for object

application development included the uncontrolled way with which
developers could specify persistent objects, the inability of the
programmer to specify which objects persist and the lack of rigor
in database development. While the prototypes appeared quickly
and worked well, production systems often suffered once the
applications were deployed.

Another deficiency of these early ODBMSs was the lack of SQL
support (or in the way SQL was implemented when it was provid-
ed). The ODBMSs without SQL failed to capitalize on the SQL
expertise within most companies. This forced companies to
absorb the additional time and cost of training developers on pro-
prietary access languages. Those ODBMSs that did implement
SQL on the client-side had network bandwidth problems that limit-
ed utility and created performance problems.

With client-side SQL implementation, almost all processing associ-
ated with a set of SQL statements occurred on the client. All
classes and subsequent contents referenced by the SELECT
statement had to be passed over the network from the server to
the client, even if the result of the query was only one or two
items of information. This created large volumes of network traffic
for each SQL request; further impacting performance because
extensive portions of the database needed to be locked against
other write attempts. Contrast this with a server-side SQL imple-
mentation where the SQL statements are passed from the client
to the server. The server processes the query and passes only fil-
tered results to the client; no unnecessary information is sent
across the network and the performance impact from locks is
minimized. Overall, server-side SQL is considered the most effec-
tive implementation.

Early ODBMSs failed to provide the optimal database platform for
object development. The poor performance, lack of SQL support,
inadequate network bandwidth, and the proliferation of persistent
objects caused developers to abandon the early object databas-
es. Intent on providing another option, RDBMS vendors relabeled
their products object-relational databases and added capabilities
such as O-R mapping in order to support objects. These also failed
to become the ideal database platform for object developers.

1. The Shift to Object Development
The most important trend in software development in the past decade has been the shift to object develop-

ment methods and tools, thanks in part to the emergence and adoption of Java. Developers have found

that object-based development provides huge advantages in the rapid development of applications that

model real-world problems. Object concepts such as inheritence, encapsulation, one-to-many relationships,

and polymorphism provide a fast and natural way for developers to directly represent complex data and its

inter-relationships.

3

Relational databases weren’t quite ready

In order to represent an object design in a relational database, all
classes must be mapped to relational tables, a process known as
object-relational mapping. With O-R mapping, each object must be
represented by two-dimensional tables; there is no way to directly
represent or store object concepts, such as inheritance or rela-
tionships between multiple objects.

O-R mapping also created a substantial performance problem
because related data had to be split (deconstructed) into multiple
relational tables. Each time objects were stored, they had to be
deconstructed into multiple tables, and reconstructed when
retrieved – adding as much as 30-40% to the code required for an
application. Object reconstruction usually involved combining data
from multiple tables using complex-relational joins and the com-
plexity of these joins was extremely processing-intensive and ulti-
mately slowed systems to a crawl.

While seeming to provide a solution that circumnavigated the
object to relational problem, the O-R mapping process turned out
to be notoriously complex and time-consuming. In an attempt to
avoid the development overhead, object-relational database sup-
pliers and third parties introduced object-relational mapping tools,
a layer of software that translates between application objects
and relational database tables. However, the same process of
converting between objects and tables still occurred within the
database, and so did attendant performance problems.

As with the early ODBMSs, the stopgap measures provided by the
relational vendors were unwieldy, added to the overall cost of

deploying and maintaining applications, and failed yet again to
provide the optimal database platform for object developers.
Individually, RDBMSs and ODBMSs could not meet the needs of
object developers. Some hybrid of the two was necessary to pro-
vide developers and IT with the exact capabilities required to facil-
itate their object application development and management.

The best of both worlds

The solution was an object-SQL database that combined the ease
of object development and the ubiquity of SQL – the ultimate
fusion of relational and object technology. Designed from the
ground up to handle objects and to enable the rapid development
of complex object applications that model and solve real world
problems.

Uniquely positioned to provide the optimal foundation for object
development and deployment, an object-SQL database would suc-
ceed where previous generations of databases failed. Developers
would be able to create applications and services faster, cheaper
and more effectively while simultaneously allowing IT to cost-
effectively deploy and administer these applications. No such
database existed, though…until Matisse.

As an object-SQL database Matisse provides support for object-to-
object mapping, ANSI SQL, standards, UML, while offering high
performance and zero administration. Matisse is the only data-
base that has been able to bridge the gap between object devel-
opers and object management. Matisse has taken the best capa-
bilities of object and relational databases and created The Object
Developer’s Database.

2. Matisse: The Object Developer’s Database
Object development has created a need for a DBMS that provides the direct object management and UML

support of an object database, yet ofers the benefits that have traditionally been delivered by relational

databases: SQL access, per formance, scalability and standards compliance. Matisse is the first database to

truly bridge the object development and management gap and provide the capabilities that are needed by

object developers and IT to overcome the deficiencies of early databases. Matisse was built from the

ground up to be a high-per formance database that integrates objects with SQL.

Direct object management

Matisse supports the full object model, including features like
classes, inheritance and encapsulation. In terms of the manage-
ment of objects, Matisse has brought together the best aspects
of object and relational DBMSs by eliminating the need for object-
relational mapping and allowing objects to be directly accessed.
Removing the dependence upon object-relational mapping allows
Matisse to speed object-based development by enabling develop-
ers to map objects directly to the database. This also means that
since there is no dependence on object-relational mapping there
are also no intervening layers of software, no translation between
objects and relational tables, no joins, and no performance penal-
ties associated with Matisse.

UML support

Matisse had traditionally used ODL (an object definition language
championed by the Object Data Management Group) as the defini-
tion language for objects. ODL is now being replaced by the
Unified Modeling Language (UML) as the favored language for
modeling and defining objects. In order to ensure that object
developers can utilize the benefits of UML, Matisse takes the
UML output directly from tools like Rational Rose and converts it
to Matisse database schema (bypassing ODL).

4

SQL access

Matisse- managed data can be defined, read, updated or deleted
using industry-standard SQL. So developers can leverage their
existing expertise with a variety of object languages including SQL
(the standard for data access). Matisse provides a full, server-
based, native SQL implementation that complies with the SQL 2
standard with object extensions and includes support for stored
procedures and triggers.

Performance

The Matisse versioning engine assures data consistency while
enabling applications to read data while being updated (or
loaded). Matisse can out-perform relational databases in situa-
tions where large volumes of data are being loaded or updated at
the same time as other applications are reading data. This means
that Matisse can support transaction processing and data analy-
sis applications simultaneously on a single system.

When an object is updated, the versioning engine creates a new
version of the object in a new location, instead of updating the old
version in place. Applications can read the previous version of the
object while the new version is being created, and because all ref-
erences are left intact, see a consistent view of the database at
all times. Once the new version has been created, and the trans-
action is complete, subsequent read requests are directed to the
new version. If the transaction fails, requests simply continue to
be directed to the previous version; there is no need to roll back
the database in order to achieve a consistent state.

As an additional benefit, applications can examine historical data
at any time by exploiting the versioning engine architecture. The
versioning engine provides access to previous versions of objects,
enabling applications to explicitly access data from previous peri-
ods, or identify objects that have been changed, deleted or
added. A financial analysis application could use this feature to
track changes in a company's stock price over time, for instance.

Relational databases typically suffer performance problems when
data is retrieved from multiple tables, due to the processing-inten-
sive joins required to match related data between tables. But the
performance of SQL-based applications is often substantially bet-
ter with Matisse, than on relational databases, because
Matisse's architecture eliminates the need for processing-inten-
sive complex joins when accessing related data.

This is because Matisse uses pre-computed relationships (fast
joins) to rapidly locate and access related data from multiple
classes/tables. Inter-object references make fast joins possible
with Matisse.

With Matisse, when a class is defined, its relationships with other
classes are also defined. This results in a semantic network of
relationships throughout the database. These relationships allow
Matisse to directly access related data, a process that is trans-
parent to the requesting application. The only visible result is
greatly improved performance.

Scalability

Matisse is highly scalable because its server is implemented on
top of kernel threads, and thus scales linearly on SMP (symmetric
multi processing) architectures as new CPUs are added. Matisse
APIs are thread-safe to capitalize on the multi-threading capabili-
ties of the most recent operating systems. Matisse takes full
advantage of its optimized cache and versioning architecture in
order to maximize database performance with existing hardware.

Stored procedures, triggers and referential integrity

Just as would be expected with any of the major relational data-
bases, Matisse also provides SQL-stored procedures, triggers and
referential integrity. Stored procedures are sequences of declara-
tive and procedural SQL statements that execute on the server,
and have become widely used to increase coding efficiency and
performance. A stored procedure on the server can be used by
multiple applications.

Triggers are stored procedures whose execution is initiated when
a specific database operation is performed, or when an operation
results in a predefined database condition. Unlike regular stored
procedures, they cannot be called directly from an application.
Triggers are widely used to implement constraints on database
operations and maintain database integrity.

Maintaining referential integrity with relational databases creates
additional work for developers. When data is deleted or moved,
other tables that refer to the data must also be updated. For
instance, if a customer is removed, the customer's orders must
also be removed. With Matisse, maintenance of referential integri-
ty is greatly simplified through relationships between objects.
Matisse relationships are bi-directional. This ensures Matisse is
automatically aware of referential integrity and if an object is
deleted, all references to it are updated.

Standards compliance

Matisse object and SQL interfaces comply with established stan-
dards to ensure software compatibility and portability. ODL, Java
and C++ access are ODMG and UML compliant. Matisse supports
a full set of object features accessible through these standard
languages including multiple inheritance, encapsulation, and poly-
morphism. Matisse also supports the JDBC/ODBC standard for
SQL access from applications in Java and other languages.
Matisse supports the EJB and J2EE standards.

Even if an organization's development is primarily focused on Java
or other object languages, there is often a need to support exist-
ing SQL-based software. Products such as PowerBuilder and
Crystal Reports provide a fast way to generate reports and appli-
cations. Many organizations use data-analysis applications that
rely on SQL to extract database information for business deci-
sions. Matisse’s standards-based SQL implementation means
these applications can be used to access Matisse databases.
Because the Matisse SQL implementation is native and server-
based, these applications typically operate as effectively with
Matisse as they do on relational databases. 5

Matisse was designed to require minimum administration once in
operation; in many cases it will operate with zero administration,
making the database ideal for embedded or remote systems
where administrator intervention is either difficult or impossible.
Designed to be always running, many of the tasks required to
administer the leading relational databases are simply not
required with Matisse. Simply setup, configure, and monitor.

In cases where ongoing administration is desired, all database
management operations can be performed while the system is
online and under load. Some of the zero-administration capabili-
ties of Matisse include:

No log files

Traditional DBMS products require administrators to continuously
monitor the growth of the journal or transaction log file (which
contains a replica of every update performed in the system) and
to run frequent backups to be able to truncate and reorganize the
log. Matisse does not require a transaction log. The Matisse ver-
sioning engine guarantees database recovery while avoiding the
overhead of transaction log operations and administration. This
relieves organizations of the considerable burden of having skilled
administrators define and manage log files.

Automatic tuning

Matisse automatically and continuously optimizes disk use with-
out administrator intervention. As a new disk is made available,
Matisse integrates it into its management along with all other
available disks to ensure the best performance. In addition,
Matisse automatically monitors the utilization of all disk
resources and load-balances among them since each time the
Matisse versioning engine writes a new version of an object; it
selects the least-used disk as its location.

With Matisse, there is no need for administrators to allocate cer-
tain data to specific disk resources, or to reorganize data as
disks fill up. Disk administration consists of setting parameters
such as cache size and defining physical disks. Matisse’s auto-
matic tuning capability leads to a performance-optimized distribu-
tion of objects across all available disks.

Online parallel backup

Backups can be generated with Matisse while online and program-
matically without manual intervention and without interrupting
operational applications, even when the system is operating under
a full workload. This is especially important for unattended or
remote applications where a full-time DBA may not be available.

No scheduled downtime

Matisse backups require no blocking or downtime. The database
schema can be changed while the database is online, so that
even frequent design changes do not cause operational disrup-
tion.

Matisse's unique design allows nearly all-administrative functions
to be performed while the system is up and under load and no
matter whether data is being accessed in read or write mode.
These functions include: managing users, updating the database
configuration online by adding or deleting disks, and doing full or
incremental backups.

24x365 reliability

Inherently reliable, Matisse also provides automatic disk mirroring
and replication software mechanisms to provide fault tolerance
and uninterrupted service in the event of disk crashes or system
failures. Automatic disk mirroring also allows read access scala-
bility without the addition of specialized hardware or software. The
system automatically reconfigures itself, so no system administra-
tion is required to implement this capability in the case of a pri-
mary system failure.

Matisse technology has been used to control nuclear power
plants and complex chemical manufacturing processes for over a
decade. In these situations, the database is required to be avail-
able 24x365 with predictable response times and uninterrupted
service even while configuration changes are being implemented.

Dynamic schema evolution

The application schema is language independent and stored in
the database. Matisse’s dynamic schema evolution capability
allows for the addition or removal of classes or properties while
the system is online, ideal for development environments in which
the data model changes and simulation is frequently performed.

3. Reducing the IT Burden
Object-to-object mapping, SQL, standards compliance, performance and scalability–these features represent

the best-of-both-database-worlds and help eliminate the development complexity and per formance road-

blocks of previous databases. But the benefits of Matisse are more far-reaching than the developer

community...IT organizations also face many issues with legacy database systems that make successful

deployment and maintenance of object applications difficult.

6

It takes a flexible product to meet all these scenarios. Matisse
ensures the longevity of the investment in both object develop-
ment languages and in the database management system.
Matisse was designed to provide heterogeneous client/server
architecture for high- performance operations on complex data
types. The Matisse server, a general-purpose object manager,
operates as a back-end server handling a repository of persistent
objects. Client applications can connect to the server through the
Web, a dedicated network, or local transport.

Matisse future-proofs object application development by providing
an OPEN API for language bindings. As development languages
continue to evolve and developer and corporate preferences shift,
it is critical that the database powering object applications be
open, while conforming to standards.

Language independent

Matisse is language independent, so that data created using one
language can be accessed by applications using other scripting
languages or object environments. New languages can be intro-
duced as necessary or as industry standards and developers’
preferences change. Applications in different languages can be
mixed within the same system. This is useful when there is a
change in the preferred development language at an organization.
For example, new Java components could be added to an older
C++ application.

Matisse provides support for most popular programming lan-
guages: SQL, Java, C++, Perl, Python, PHP, and C. Third party
bindings (e.g. Eiffel) can also be added. Developers using native
programming languages to manipulate persistent data can build
and deploy applications quickly and easily, as there is no lan-
guage learning curve. Matisse’s support of virtually any language
means organizations no longer have to worry about having the
appropriate skill-set on hand; existing knowledge and skills can be
leveraged, freeing organizations to focus on the development of
the application components.

XML ready

Matisse is also a natural database for handling XML documents
since XML hierarchical elements can be mapped directly to
Matisse object structures. Matisse provides an object API to
manipulate XML documents, as well as an XML utility, (referred to
as mt_xml) that provides automatic loading and generation of XML
documents through SQL queries. This utility maps XML docu-
ments to a pre-defined schema, performs batch loading into
Matisse, or exporting from Matisse, and validates the structure of
the XML documents against the Matisse schema.

Multimedia ready

The performance and consistency advantages of the Matisse
database apply to multimedia information as well to other types
of data. Streaming media can be managed within the database
itself, rather than as separate multimedia files. Matisse allows
applications to jump forward, backward, pause and restart at any
point in a media stream. Because Matisse enables applications
to update on disk only the portion of the data that has been
changed, rather that rewriting the entire data set, performance
when updating large volumes of multimedia information is
enhanced.

Matisse includes powerful features for text analytics. Using
Matisse's entry-point mechanism, text can be indexed in order to
support rapid searches. Indexes can be built based on the occur-
rence of various text strings, or full-text indexing can be applied.
Different strings can be ranked so that searches present data of
the greatest value to the user.

4. The Safe Business Solution
An important, but often overlooked element of application development and deployment, has to do with the

availability of the database to meet the growing and changing needs of developers, IT and customers. It’s

critical that a database investment future-proof applications as changes occur, such as: developers’

preferred development language changes, reduced administrative staff, different deployment platforms,

new branch and remote offices or stores, and the addition of more computing resources (i.e. CPUs).

7

Matisse Software Inc.
433 Airport Blvd, Suite 421
Burlingame, CA 94010
650-548-2581

Matisse provides the following advantages for developers and IT
professionals:

* The Matisse versioning engine ensures data consistency, recovery from transaction failure,
and access to historical data without the need for log files; so there is no need for time-
consuming log file administration.

* Matisse excels at "reading while writing” and can simultaneously load/update large
amounts of data while supporting high query levels.

* The Matisse architecture automatically load-balances among available disk resources and
in many applications Matisse can operate with zero administration, making the database
suitable for distributed remote or embedded systems.

* Matisse is extremely flexible. Changes can be made to the schema at any time, even while
the database is online.

* Matisse contains extensive features for storing, manipulating and indexing diverse data
types such as streaming media and text.

* Matisse's reliability has been well proven being that the Matisse has been extensively
used for 24x365 operation in applications such as nuclear fuel process control.

* Matisse is the fusion of relational and object technology. Matisse was designed from the
ground up to handle objects and to enable the rapid development of object applications
that model and solve real world problems.

* Matisse’s support for object-object direct mapping, ANSI SQL, standards, the Unified
Modeling Language (UML), high performance and zero administration means that Matisse
has been able to cross the gap between object developers and object management.

* Matisse is uniquely positioned to provide the optimal foundation for object development
and deployment. It allows developers and IT to create, deploy and administer applications
and services faster, cheaper and more effectively.

With the success of Matisse in Europe, and the success of the
Matisse-powered solutions, object developers familiar with previ-
ous generations of object and object-relational databases have
found Matisse to be a fully SQL-compliant object database that
exceeds the performance and scalability of relational databases.

©2003 Matisse Software Inc. All rights reserved.

5. Conclusion
Matisse has an extensive history with hundreds of man-years of development behind it and has been

powering industrial and other mission-critical systems at over 150 sites in Europe for over a decade.

8

