Matisse

The Object Developer's Database

Managing a Class Hierarchy with SQL in Matisse

A Technical Brief

Matisse Software Inc.

© 2003 MATISSE SOFTWARE INC., ALL RIGHTS RESERVED. Matisse is a registered trademark of Matisse software
Inc. Other product or company names mentioned herein may be the trademarks of their respective owners.

Matisse m_ .

The Object Developer's Datahase

Introduction

The SQL standard, which has been constrained for
the past 30 years to query and manipulate rela-
tional tables, has now been morphed by Matisse
Software into a powerful language to operate on a
hierarchy of classes. This technical brief explores
the management of a hierarchy of classes with
standard SQL-99, and shows the benefits of using
SQL on an object database schema in terms of
simplicity, extensibility and performance.

Object developers will discover that it is now possi-
ble to develop component-based business logic
with “stored methods”. While relational database
developers will discover that classes, attributes,
stored methods and objects can easily be mapped
into familiar relational concepts respectively tables,
columns, stored procedures and rows.

Defining a Class Hierarchy

In response to the market demand, relational ven-
dors have extended their relational model to sup-
port the definition of class hierarchy. The object-
relational model was born. However database
developers are not taking advantage of these
object features, simply because it is (1) complex
to design, (2) the class hierarchy is too rigid to be
extended and (3) the runtime performance
degrades substantially compared to plain relational
modeling.

Consequently, what database developers really
need is a true object model accessible via SQL.

For example, consider the case of a simple class
hierarchy that models clients in a stock manage-
ment system as described by the UML diagram in
Figure 1. Ideally, you would like to define cate-
gories of clients that share properties from the par-
ent Customer class while maintaining properties
of their own. This category tree lends itself natural-
ly into a hierarchy of classes.

Customer
EaccountNo : Integer
[Ename : String
Bphone : String

Corporation

[BlprimaryContact : String
[EcontactPhonelist : List(String)
BaccountRep : String

Figure 1: The class Customer and its subclass Corporation in UML

Matisse Native Object Model matches naturally
with the UML class hierarchy, resulting in a two
classes database schema as shown in figure 2.

CREATE CLASS Customer (
accountNo INTEGER NOT NULL,
name STRING,

phone STRING

)

CREATE CLASS Corporation UNDER Customer (
primaryContact STRING,

contactPhonelList LIST (STRING),
accountRep STRING
)i

Figure 2: The class Customer and its subclass Corporation in DDL with
Matisse

By comparison, with the object-relational model,
you need to define types and tables (and possibly
views) to map into a class hierarchy, as shown in
figure 3. This gives you the illusion to deal with an
object model while it all ends up into relational
tables. The underlying model of object-relational
databases remains the same: rows and columns.
These mappings between types and tables or
tables and views are usually complex to define, to
maintain and error prone, so database developers
are rarely using these features

CREATE TYPE Customer objtyp AS OBJECT (
accountNo NUMBER,
name VARCHAR(50),
phone VARCHAR (20)

) NOT FINAL;

CREATE TYPE contactPhones_ vartyp
AS VARRAY (10) OF VARCHAR(20) ;

CREATE TYPE Corporation_objtyp
UNDER Customer objtyp (
primaryContact VARCHAR(50) ;
contactPhones contactPhones_vartyp,
accountRep VARCHAR(50) ;
) NOT FINAL;

CREATE TABLE Customer_ objtab
OF Customer objtyp (accountNo PRIMARY KEY)
OBJECT IDENTIFIER IS PRIMARY KEY;

CREATE TABLE Corporation_objtab
OF Corporation_objtyp
(accountNo PRIMARY KEY)
OBJECT IDENTIFIER IS PRIMARY KEY;

Moatisse

The Object Developer's Datahase

In Figure 4, Matisse SELECT statement returns
all the instances of the class Customer and its
subclass Corporation in a table format. The
columns of the resulting table are the attributes
of the Customer class.

> SELECT * FROM Customer;

accountNo name phone
33450001 John Doe 415-596-1042 <- Customer
33450008 Mary Smith 650-222-2222 <- Customer
102000448 Matisse Inc 650-548-2581 <- Corporation

Figure 3: The type Customer and its subtype Corporation in DDL with
an Object-Relational DBMS

The definition of both Customer objtab and
Corporation objtab tables, in figure 3, pre-
vents the application from accessing the corpo-
rate customers when selecting data from the
Customer objtab table, which is expected
when programming with objects.

Accessing Objects in the Hierarchy

A key benefit of modeling a class hierarchy is to
filter data by class and sub-classes within the
hierarchy. Another important advantage is the
generic access to objects, which lets you extend
the class hierarchy without modifying the access
methods already in place. However with object-
relational technology, accessing objects in a
class hierarchy is quite challenging, which often
leads developers to flatten the class hierarchy
into a single table.

Figure 4: Selecting all customer types with Matisse

Matisse also supports the syntax to select
Customer objects while excluding objects of its
sub-classes by using the keyword ONLY to filter
objects as shown in figure 5.

> SELECT * FROM ONLY Customer;

accountNo name phone

33450001 John Doe 415-596-1042 <- Customer
33450008 Mary Smith 650-222-2222 <- Customer

Figure 5: Selecting customers without corporate customers with Matisse

On the other hand, when you are using the
object-relational model defined in figure 3,
retrieving all customers requires to combine the
result of two SELECT statements from the tables
for Customer objtyp and
Corporation objtyp (figure 6).

> SELECT accountNo, name, phone
FROM Customer_ objtab
UNION
SELECT accountNo, name, phone
FROM Corporation_objtab;

Figure 6: Selecting two types of customers with an Object-Relational DBMS

In order to avoid using UNION to select both
kinds of customers, you need to create a single
table for both Customer objtyp and

Matisse

The Object Developer's Datahase

Corporation objtyp, where you insert both
types of objects into the table. The problem with
this approach is the complexity for accessing
sub-table columns. Figure 7 illustrates the type-
casting mandatory to filter objects of type
Corporation and to access the
primaryContact column, which is defined in
Corporation objtyp, and notin
Customer objtyp.

> SELECT TREAT (VALUE (c)
AS Corporation_objtyp) .primaryContact
FROM Customer objtab c
WHERE VALUE (c) IS OF (Corporation_objtyp) ;

Figure 7: Selecting a column from the Corporation class with an Object-

Relational DBMS

In figure 8, Matisse demonstrates the simplicity
of selecting an attribute from a sub-class.

> SELECT primaryContact FROM Corporation;

Figure 8: Selecting an attribute from Corporation with Matisse

Today, The vast majority of applications and
services are developed using an object program-
ming language such as Java, C# or C++. Ideally
you would expect to retrieve objects directly from
the database, avoiding the O-R mapping layer.
To avoid O-R mapping, Matisse provides the
REF () function, when used in SELECT state-
ment, returns objects rather than atomic values
as shown in the following Java example:

String query = “SELECT REF(c) FROM Customer c
ORDER BY c.accountNo”;
stmt = conn.createStatement() ;
resultSet = stmt.executeQuery (query) ;
while (resultSet.next()) {
// Objects of the right class
// (Customer or Corporate)
// are actually returned
Customer c = (Customer)resultSet.getObject(l) ;
}
resultSet.close() ;
stmt.close() ;

Figure 9: A Java program with a SELECT statement returning Java
objects

Programming with Stored Methods

Up to this point, we have discussed how class
and inheritance can be integrated into SQL, now
let’s discuss how to implement active business
components that rely on unhampered object pro-
gramming.

Persistent Stored Module (PSM) is the compo-
nent of the SQL-99 standard that provides syn-
tactic and semantic constructs for the specifica-
tion of stored methods. In addition to the obvious
advantages of stored procedures such as run-
time performance or reusability, you also benefit
from the object concepts of polymorphism,
encapsulation to achieve full reusability and
extensibility of your business components.

Consider now the example of a financial institu-
tion, which wants to implement diverse fee man-
agement policies per account type as described
in the account hierarchy in figure 10.

‘ Account

accountld : String
[Ebalance : Numeric

EtransferMoney()
EtransferTo()
MarketAccount SavingAccount
.transferTo() .transferTo()

Figure 10: UML diagram for Account classes

The transferMoney () method is a static
method, equivalent to a procedure in the relation-
al world, that transfers an amount of money from
a source account to a destination one. The
transferTo () method is defined on each type
of account and it implements the business logic,
shown on figure 11, which is associated with
each account type.

Moatisse

The Object Developer's Database

CREATE STATIC METHOD transferMoney (origAccntId STRING,
destAccntId STRING,
amount NUMERIC (19, 2))

RETURNS NUMERIC (19,2)
FOR Account
BEGIN
DECLARE origAccnt, destAccnt Account; -- Account objects

SELECT REF(c) INTO origAccnt FROM Account WHERE accountId = origAccntId;
SELECT REF (c) INTO destAccnt FROM Account WHERE accountId = destAccntId;

RETURN origAccnt. transferTo (destAccnt, amount);
-- returns a processing fee
FND;

CREATE METHOD transferTo (destAcct Account, amount NUMERIC (19, 2))
RETURNS NUMERIC(19,2)
FOR Account
BEGIN

SELF.subtractBalance (amount) ;

IF balance < 0 THEN
... —-- raising exception;
END IF;
destAcct.addBalance (amount) ;
IF amount > 100.00 THEN

RETURN 1.20; -- a processing fee
ELSE

RETURN 2.50; -- a processing fee
END IF;

rND;

CREATE METHOD transferTo (destAcct Account, amount NUMERIC (19, 2))
RETURNS NUMERIC (19,2)

FOR SavingAccount

BEGIN

RETURN 1.50; -- a fixed processing fee

FND;

CREATE METHOD transferTo (destAcct Account, amount NUMERIC (19, 2))
RETURNS NUMERIC(19,2)

FOR MarketAccount

BEGIN

RETURN amount * 0.0001; -- a proportional processing fee

FND;

Figure 11: Stored methods for account management with Matisse

Matisse

The Object Developer's Database

Methods can also be used within regular SQL
statements. The SELECT statement, in figure 12,
has a where-clause which filters customers by
area code using the i sInAreaCode () method.

CREATE METHOD isInAreaCode (IN areaCode STRING)
RETURNS BOOLEAN

FOR Customer

BEGIN

RETURN SUBSTR (telephone, 1,

|END ;

3) = areaCode ;

> SELECT * FROM Customer c
WHERE c.isInAreaCode(‘'415’) = TRUE;

Figure 12: A SELECT statement using a SQL method and its definition
with Matisse

Chances are that you would override the method
isInAreaCode () for Corporation, which
searches in contactPhoneList as well.

In this case, the object-relational approach
shown in figure 13 generates more complex
code that is costly to extend and maintain.
Extending the class hierarchy, by adding a sub-
class of Customer, which has a different way of
managing contact phone numbers, requires to
update all SELECT statements that filter by area
code.

> SELECT name FROM Customer c

WHERE (SUBSTR(c.telephone, 1, 3) = '‘415’)
OR (VALUE(c) IS OF (Corporation_objtyp) AND
(SUBSTR (c.telephone, 1, 3) = ‘415’
OR SUBSTR((VALUE (c) AS
Corporation_objtyp) .contactPhonel,1,3)="415"
OR SUBSTR((VALUE (c) AS
Corporation_objtyp) .contactPhone2,1,3)="415"'
OR SUBSTR((VALUE (c) AS
Corporation_objtyp) .contactPhone3,1,3)="415"'
OR SUBSTR((VALUE (c) AS
Corporation_objtyp) .contactPhone4, 1,3)="415"'
OR SUBSTR((VALUE (c) AS
Corporation_objtyp) .contactPhone5,1,3)="415")

Figure 13: A relational approach instead of using isInAreaCode()

method

Extending the class hierarchy with Matisse con-
sists in defining an overriding method
isInAreaCode () for the new type, and all the
existing logic in place still works without any
change.

Joining Classes

Database applications usually require extensive
use of multi-table joins. But joins are computa-
tionally intensive, and each join is computed at
runtime to link information on-the-fly, thereby
substancially impacting performance.

To illustrate multi-tables joins, consider the case
of a stock management system, where the rele-
vant classes are shown in the UML diagram in
the appendix along with its equivalent definition
by Matisse Data Definition Language.

> SELECT c.name,
o.orderNo,
l.lineItemNo

FROM Customer c, Order o, LineItem 1
WHERE c.orders = 0.0ID -- line 5
AND o.lineItems = 1.0ID -- line 6

AND o.orderNo = 3001;

name orderNo lineItemNo
John Doe 3001 21001
John Doe 3001 21002

Figure 14: Joining classes with Matisse

To retrieve the customer and line item data for a
specific purchase order, you must join three
classes, as illustrated by figure 14. In Matisse
SQL syntax, the 01D property, which represents
the object identifier, is implicitly defined for all
classes, and plays the role of a primary key. The
orders property at line 5 is defined in class
Customer as a reference to Order objects, and
it acts as the foreign key to the class Order.

mz)ﬁsse

The query statement shown in figure 15 can be
rewritten using a navigational expression through
object references as follows:

> SELECT o.orderedBy.name, -- line 1
o.orderNo,
o.lineItems.lineItemNo -- line 3

FROM Order o

WHERE o.orderNo = 3001;
name orderNo lineItemNo
John Doe 3001 21001
John Doe 3001 21002

Figure 15: Navigation through references with Matisse

Interestingly, you may have noticed that both
queries, in figure 14 and 15, return the same
results. This demonstrates that join conditions
are expressions of relationships between objects.
The expression in line 4 in the Join statement
(figure 14) is specifying the navigation path
through the reference 1ineItems between class
Order and class LineItem, as expressed in
line 3 of the query statement figure 15. In fact,
Matisse transforms a SELECT statement with join
conditions into navigational expressions using
relationships defined on classes. For both state-
ments, the selection operation (i.e., where
clause) filters objects based upon attribute val-
ues, and the projection (i.e., select-list) is gener-
ated by navigation through inter-objects refer-
ences.

In summary, the query execution does not need
costly join calculations, which are usually compu-
tationally intensive operations for relational prod-
ucts.

Matisse eliminates the need for join operations
by taking advantage of the explicit references
defined between objects. Therefore, for join
intensive applications, Matisse easily outper-
forms relational products by 100x while consum-
ing much less computer resources.

The Object Developer's Database

Data Reporting

Since Matisse supports the SQL standard as
demonstrated here, as well as ODBC and JDBC,
it is easy to connect Matisse to any reporting tool
that relies on ODBC or JDBC for easy and quick
business data presentation.

A class hierarchy often models a hierarchy of
types upon which summary reports can be
based.

In figure 16, The GROUP BY statement retrieves
the average of each customer's total purchase
amount by client type. The

SUM (c.orders.totalPurchase) operation
returns each customer's total purchase amount,
since SUM () aggregates data from all the orders
of each customer.

> SELECT c.CLASS NAME AS “Client Type”,
AVG (SUM(c.orders.totalPurchase)) AS “Avg Odr”
FROM Customer c
GROUP BY c.CLASS NAME;

Client Type Avg Odr
Customer 124.55
Corporation 2268.23

Figure 16: Summary Report using grouping by class

Matisse

The Object Developer's Database

Conclusion

In this brief, we have introduced new ways of managing a class hierarchy with SQL. While in
Matisse, SQL queries are relational in their syntax, they also take advantage of the object paradigm
by supporting inheritance, polymorphism, and true navigation. Furthermore, query processing takes
place on the server to enforce security and achieve best performance. Matisse native object model
combined with SQL support demonstrates immediate benefits over relational or object-relational
technology:

- Simplicity and extensibility when defining a class hierarchy
- Natural integration with object-oriented languages

- Better performance when joining classes

- True object-oriented programming using SQL methods

These benefits enable you to implement applications and services that require high performance on
a level of data complexity that goes beyond the modeling capabilities of legacy relational databases.

Matisse Software Inc.
www.matisse.com

433 Airport Blvd, suite 421
Burlingame, CA 94010
650-548-2581

Download a developer’s version of Matisse 6.0 at www.matisse.com

©2003 Matisse Software Inc. All rights reserved.

Motisse

The Object Developer's Database

Appendix

The following figures represent the UML diagram and class definition for the stock management sys-
tem, which illustrates multi-tables joins in Matisse.

Customer
MaccountNo : Integer |+orderedBy +orders Order
name : String ElorderNo : Integer
[Eohone : String 0..1 0.*
\ +containedIn
0..n
Corporation J:)Iineltems
ElprimaryContact : String . al
[BlcontactPhonelList : List(String) Lineltem
[BlaccountRep : String .IineltemNo - Integer
\

Figure 17: UML diagram for Customer, Order, and Lineltem

CREATE CLASS Customer (
AccountNo INTEGER NOT NULL,
name STRING,
phone STRING,
orders REFERENCES (Order)

INVERSE Order.orderedBy

)

CREATE CLASS Order (
orderNo INTEGER NOT NULL,
orderedBy REFERENCES (Customer)
CARDINALITY (0, 1)
INVERSE Customer.orders,
lineItems REFERENCES (LineItem)
INVERSE LineItem.containedIn
)

CREATE CLASS LineItem (
lineItemNo INTEGER NOT NULL,
containedIn REFERENCES (Order)
INVERSE Order.lineItems
)

Figure 18: Class with References in DDL with Matisse

