Matisse® XML
Programming Guide

MATISSE XML Programming Guide
Copyright © 2017 Matisse Software Inc. All Rights Reserved.

This manual and the software described in it are copyrighted. Under the
copyright laws, this manual or the software may not be copied, in whole or in
part, without prior written consent of Matisse Software Inc. This manual and
the software described in it are provided under the terms of a license between
Matisse Software Inc. and the recipient, and their use is subject to the terms of
that license.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-
7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. and
international patents.

TRADEMARKS: Matisse and the Matisse logo are registered trademarks of
Matisse Software Inc. All other trademarks belong to their respective owners.

PDF generated 7 January 2017

Contents

Intended Audience 7
ConVveNntions 7
Using the XML Utilities i, 8
11 ThemtxmlUtility 8
Return Status 8

Location 8
Importing XML Documentsciiiiiaann.. 9
21 ASimpleExample 9
XML Example 9
ODLEXample e 9

2.2 Attribute Values 10
Integer 10

Real Number 11
MT_STRING e e 11
MT_CHAR ... 12

Boolean 12

Date ... 12
Timestamp 12

Interval 13

2.3 Importing Multiple Objects 13
XML Example 13

2.4 UsingRelationships 14
ODLExample e e 14

XML Example 1 ... 15

XML Example 2 16

2.5 Using MtPrimaryKey 17
XML Example 17

2.6 Updating Attributes and Relationships of Objects 18
Updating Attributes 18

Updating Relationships 19

2.7 DeletingObjects 21
28 UsingtheOidFormat 21
ODL Example e 21
CreatingObjects i 22

Updating Attributes 22

Updating Relationships 23
DeletingObjects 24

2.9 Matisse ListDataTypes, 24
Numerical Lists and Boolean Lists 24

Contents 3

MT_STRING_LIST 24

OtherLists e 25

2.10 Matisse Data Types Restriction 25
211 Multiple transactions (--commitoption) 25
2.12 Remapping Namespaces (--fn and --dn options) 26
2.13 Parallel Loading (--parallel option) 26
2.14 CurrentLimitations 26
3 Exporting XML Documentsc.iiiiiiinnenn 27
3.1 Export Using SQL (-sqloption) 27
3.2 ExportUsing OID (--oid option) 27
3.3 Exporting Primary Keys (--pkoid option) 27
3.4 Exporting Media Data (--emediaoption) 28
3.5 Splitting XML Data (--size option) 28
3.6 Exporting from a Namespace (--nsoption) 28
3.7 Exporting in parallel (--parallel option) 28
3.8 Exporting the whole Database 28
Using the fulloption 28

XML example 29
Notesonimporting i 29

4 Matisse XML C Programming APl 30
4.1 Environment 30
42 APIReferences 30
e 30

EXPOTrtOD ECES. vttt e 30

= e I Y 32

a1 = 32
TMPOTEXML o v v e et e e e e 33
MATISSEELLOL .« ittt e it e e et e e e et e e e 35

SUC S S vttt ettt et e e 35

4.3 Typesand Errors 36
MTXML INVALXML. . oottt et i e e i e e e ee e 36

MTXML MATISSE ERRORvitiininitiennan.... 36

MTXML NOTENOUGHSPACEcuiiiinnnannnnn.. 36

MTXML NULLPOINTERo..iuiuininnananan.... 37

MTIXML SYSTEMERRORttt 37

MTXML TYPENOTSUPPORTEDcuiununennannnnn.. 37

5 Programming API for Internal Objects 38
51 Environment 38
52 APIReferences 38
CloseInpuULSEream . .v vt ettt e et 38
Free0bIeCtReD. « v vttt 38
NEeXtOD T CERED . vttt ettt et e et 39
OpPenInpPUESELrEam vttt ittt i e 40

MATISSE XML Programming Guide

53 Classesand TYpesttt 40

MEXMLELEMENT . « vttt ettt e e et e e e e 41
MEXMLODIELEMENt « vt v e ettt e e et 41
MEXMLALEELEMENT © vttt ettt e ettt e e e e i e e e 42
MEXMLREIELEMENT © vttt ittt e ettt e e e e e i e e e e 43
MEXMLALELIDULE « ottt et e et e e 43

5.4 EITOrS .o 43
MTXML _ENDOFSTREAM . .\ttt tteiieeiieeeaans 43

MTXML INVALSTREAM .. otvvttieeee e eeeeaen 44

g o 1= 45

Contents 5

Tables

Table1.1 mt xmlstatuses 8

6 MATISSE XML Programming Guide

Introduction

The mt _xm1 utility simplifies the development of applications using XML with
Matisse. The mt _xm1 utility allows you to manage XML documents in the
database. With mt xm1, you can import XML data into a database or export
objects from a database into an XML document.

Intended Audience

Conventions

This document should be read by any developer handling XML documents with
Matisse, regardless of the development environment.

This document uses the following conventions:

Text
The running text is written in characters like these.
Code

All computer variables, code, commands and interactions are shown in this
font. Also, any code and commands that the user must enter are shown on a
gray background.

variable

In a program example, or in an interaction, a variable, which means
anything that is dependent on the user environment, is written in italics.

[class]

In the schemas, classes are represented by their name between brackets
(11).
attribute/

In the schemas, attributes are represented by their name followed by the
character /.

relationship->

In the schemas, relationships are represented by their name followed by the
characters —>.

References

References to another part of the Matisse documentation are made as shown
here.

Introduction

1 Using the XML Utilities

1.1 Them

Return Status

t xml Utility

To import an XML document file input.xml into a database example on
host Iocalhost, use the following command:

o)

% mt xml -d example@localhost import -f input.xml

To export objects specified by SQL statement sqgl from database example on
host Tocalhost to the file output.xml, use the following command:

o)

% mt _xml -d example@localhost export -f output.xml --sql
"<sgl>"

You can use the standard input or the standard output instead of specifying

xml_file by using the following options:

--in:reads XML document from the standard input

--out:writes XML document into the standard output

You can get a status report of the number of objects imported/exported by
specifying the -v option. The status report is written to the standard error. The -
-help option provides a full description of the command line options.

The mt_xml utility can return any status listed below.

Table 1.1 mt xml statuses

Status

Code Description

XML_SUCCESS

0 Successful. The whole XML document has been stored into the
database as new objects.

XML_PSUCCESS

1 Successful. However, some elements in the XML document were
not imported in the database, since they already existed in the
database (see section 2.4).

XML_MATISSE_ERROR

2 Error regarding Matisse (for example, class not found).

XML_SYNTAX_ERROR

w

Error regarding XML syntax.

XML_NOSUCHFILE

N

xml_file specified in the command line was not found.

Location

mt_xml is located in SMATISSE HOME/bin.

MATISSE XML Programming Guide

2 Importing XML Documents

The mt _xm1 utility adheres to the XML 1.0 standard specification. The
document type definition (DTD) of XML documents need to follow the Matisse
database schema, but they do not have to match exactly. Note that the XML
document does not have to include any reference to the DTD.

2.1 A Simple Example

XML Example

ODL Example

This example shows how to describe XML information and store it into the
database. The following XML document contains the description of an instance
of Employee.

<l—— *** xml exampleZ.l *** —-—>

<?xml version="1.0"?>

<!-- Note that the DTD does not have to be included -->
<!DOCTYPE Employee [

<!ELEMENT Employee (FirstName, MiddleInitial?,
LastName, Birthday, SocialSecurityNumber,
StartYear) >

<!ELEMENT FirstName (#PCDATA)>

<!ELEMENT MiddleInitial (#PCDATA)>
<!ELEMENT LastName (#PCDATA)>

<!ELEMENT Birthday (#PCDATA)>

<!ELEMENT SocialSecurityNumber (#PCDATA)>
<!ELEMENT StartYear (#PCDATA)>

1>

<Employee>
<FirstName>Amy</FirstName>
<MiddleInitial>F</MiddleInitial>
<LastName>Martin</LastName>
<Birthday>1967-02-09</Birthday>

<SocialSecurityNumber>123-34-4567
</SocialSecurityNumber>

<StartYear>1995</StartYear>
</Employee>

The corresponding Matisse database schema, for example, can be defined in the
ODL format as follows:

/***% odl example2.l ****/

interface Employee : persistent

Importing XML Documents

2.2

attribute String FirstName;
attribute String MiddleInitial = MtString (NULL) ;
attribute String LastName;
attribute MtTimestamp Birthday;
attribute String<12> SocialSecurityNumber;
mt entry point dictionary SSNDict
; entr; poinE of SocialSecurityNumber
makeigntryigunction “make entry”;
mt index SSNIdx
_criteria {Employee::SocialSecurityNumber MT ASCEND};

attribute Long StartYear;
}i

After importing the above XML document, you'll get an instance of the class
Employee in the database.

The values of the XML elements <FirstName>, <MiddleInitial>, and
<SocialSecurityNumber> are stored as string values in the Matisse object
since the corresponding Matisse attributes have the type String (see odl
example 2.1). The values of the <Birthday> and <StartYear> elements are
stored as MtTimestamp and Long type in the object respectively.

When an XML element has an invalid value as its corresponding Matisse
attribute, a Matisse error (MATISSE INVALIDVALUE) is raised.

If the XML Employee element includes an element, for example, Hobby, which
has no corresponding Matisse attribute in a database, this element is
transparently ignored, that is, no error or warning is returned.

Note that the element Middlelnitial of the element Employee in the DTD is
optional since it is followed by “?”” in the DTD. When an Employee element
does not have a Middlelnitial element, the corresponding object in the database
will have the default value (MtString (NULL)).

Note that all the Matisse attributes except for Middlelnitial require a value. If
you don’t provide any value for these attributes, the Invalid attribute type
Matisse error is raised.

Attribute Values

This section explains the valid format for each Matisse attribute type. For the
list types, please refer to section 2.9, Matisse List Data Types, on page 24.

Integer This includes the Matisse types MT BYTE, MT SHORT, MT INTEGER, and
MT_LONG. The valid format for integer is as follows:
10 MATISSE XML Programming Guide

[(+1-1[0{x|X}]1{0-9}*

If the number starts with 0 (zero) (except for the + or — sign), it is treated as an
octal number. If the number starts with 0x, it is treated as a hexadecimal
number. For example,

<integer>1122</integer> (decimal number)
<integer>01122</integer> (octal number)
<integer>-0x1122</integer> (hexadecimal number)

If the number is out of range, an error is raised. For example, if the Matisse
attribute type is MT _SHORT and the XML element is as follows:

<short>1234567890</short>

then you will get an error since valid value for the type MT SHORT is between
-32767 and 32767.

When the XML element has no value as shown below, no value is saved, that
is, the corresponding Matisse attribute value remains undefined or unchanged:

<integer></integer>

Real Number This includes the Matisse types MT FLOAT and MT DOUBLE. The valid format
for real number is as follows:
(+1=-10{0-9}*1[.{0-9}*] [{elE}[+]-]{0-9}*]
The following examples are valid format for real numbers:
<double>123</double>
<double>123.</double>
<double>-.123</double>

<double>+1.23e05</double>
<double>123.E-5</double>

When the XML element has no value as shown below, no value is saved; the
corresponding Matisse attribute value remains undefined or unchanged:

<float></float>
MT_STRING When the XML element has no value as shown below, the corresponding
Matisse attribute value will have an empty string:

<string></string>

Importing XML Documents 11

MT_CHAR This includes the Matisse types MT CHAR and MT ASCII CHAR. When the XML
element has more than one character, only the first character is stored and the
rest is ignored. When the XML element has no value as shown below, no value
is saved; the corresponding Matisse attribute value remains undefined or
unchanged:

<char></char>

Boolean The valid values for the Matisse attribute type MT BOOLEAN are:
true
false

They are not case sensitive. When the XML element has no value as shown
below, no value is saved; the corresponding Matisse attribute value remains
undefined or unchanged:

<boolean></boolean>

Date The valid format for the Matisse attribute type MT DATE is:

YYYY-MM-DD
where YYYY is year number, MM is month number, and DD is the day number in
the month.

For example, the following is a valid date:

<date>2001-01-10</date>

The next one is not valid, since the year 2001 is not a leap year:

<date>2001-02-29</date>
When the XML element has no value as shown below, no value is saved; the

corresponding Matisse attribute value remains undefined or unchanged:

<date></date>

Timestamp The valid format for the Matisse attribute type MT TIMESTAMP is:

YYYY-MM-DD HH:mm:SS[.uuuuuu]

where YYYY is year number, MM is month number, DD is the day number in the
month, HH is hour number (24 hour system), mm is minute number, SS is
seconds number and uuuuuu is the micro-second number. The time is stored as
GMT (Greenwich Mean Time).

For example, the following is a valid timestamp:

<timestamp>2001-01-10 23:24:00</timestamp>

The next one is not valid, since HH must be between 0 and 23:

12 MATISSE XML Programming Guide

Interval

<timestamp>2001-01-10 24:24:00</timestamp>

When the XML element has no value as shown below, no value is saved; the
corresponding Matisse attribute value remains undefined or unchanged:

<timestamp></timestamp>

The valid format for the Matisse attribute type MT INTERVAL is:

[+|-]DD HH:MM:SS[.uuuuuu]

where DD is number of days, HH is hour number, MM is minute number, SS is
seconds number and uuuuuu is the micro-second number.

For example, the following is a valid timestamp:

<interval>+10 23:00:00.00</interval>

When the XML element has no value as shown below, no value is saved; the
corresponding Matisse attribute value remains undefined or unchanged:

<boolean></boolean>

2.3 Importing Multiple Objects

XML Example

You may want to import multiple objects from an XML file. However, the
XML specification allows you to contain only one top element in an XML
document. That is, an XML file contains only one object.

We have introduced a processing instruction to let the mt xm1 utility handle an
XML document containing multiple objects. Just insert the processing
instruction line:

<?mt_xml version="2" container="yes"?>

Next, embrace all the elements you want to import with any start tag and end
tag, such as <MtContainer> and </MtContainer>

The following example contains two instances of the class Employee:

<l-— *** xml example2.2 *** —-->

<?xml version="1.0"?>

<?mt_xml version="2" container="yes"?>

<MtContainer>

<Employee>
<FirstName>Amy</FirstName>
<MiddleInitial>F</MiddleInitial>
<LastName>Martin</LastName>
<Birthday>1967-02-09</Birthday>

Importing XML Documents

13

<SocialSecurityNumber>123-34-4567
</SocialSecurityNumber>

<StartYear>1995</StartYear>
</Employee>

<Employee>
<FirstName>Rio</FirstName>
<LastName>Kay</LastName>
<Birthday>1958-03-09</Birthday>

<SocialSecurityNumber>987-87-8765
</SocialSecurityNumber>

<StartYear>1989</StartYear>
</Employee>

</MtContainer>

2.4 Using Relationships

The above examples have no relationship between objects. Now we want to
introduce the department to which the employees belong in our data model. We
define a new class, Department, as well as a relationship between Employee
and Department in the database as follows:

ODL Example /**** odl example2.2 ***x/

interface Employee : persistent

{
attribute String FirstName;
attribute String MiddleInitial = MtString (NULL) ;
attribute String LastName;
attribute MtTimestamp Birthday;
attribute String<1l2> SocialSecurityNumber;

mt _entry point dictionary SSNDict
entry point of SocialSecurityNumber
make entry function “make entry”;

mt index SSNIdx
criteria {Employee::SocialSecurityNumber MT ASCEND};

attribute Long StartYear;

relationship Department MemberOf [0, 1]
inverse Department::Members;

}i

interface Department : persistent

{
attribute String<24> Name;

14 MATISSE XML Programming Guide

XML Example 1

mt entry point dictionary DeptNameDict
entry point of Name
make entry function “make entry”;

mt index DeptNameIdx
criteria {Department::Name MT ASCEND};

relationship List<Employee> Members
inverse Employee: :MemberOf;
}i
The corresponding XML DTD and content should look like this:

<l-— *** xml example2.3 *** —-->

<?xml version="1.0"?>

<?mt_xml version="2" container="yes"?>

<!-- DTD does not have to be included -->
<!DOCTYPE Employee [

<!ELEMENT Employee (FirstName, MiddleInitial?,

LastName, Birthday, SocialSecurityNumber,

StartYear, Department)>
<!ELEMENT FirstName (#PCDATA)>
<!ELEMENT MiddleInitial (#PCDATA)>
<!ELEMENT LastName (#PCDATA)>
<!ELEMENT Birthday (#PCDATA)>
<!ELEMENT SocialSecurityNumber (#PCDATA)>
<!ELEMENT StartYear (#PCDATA)>
<!ELEMENT Department (Name)>
<!ATTLIST Department MtRelationship (MemberOf)
<!ELEMENT Name (#PCDATA)>
1>

<MtContainer>

<Employee>
<FirstName>Amy</FirstName>
<MiddleInitial>F</MiddleInitial>
<LastName>Martin</LastName>
<Birthday>1967-02-09</Birthday>

<SocialSecurityNumber>123-34-
4567</SocialSecurityNumber>

<StartYear>1995</StartYear>
<Department MtRelationship="MemberOf">
<Name>Sales</Name>
</Department>
</Employee>

<Employee>

#REQUIRED>

Importing XML Documents

15

<FirstName>Rio</FirstName>
<LastName>Kay</LastName>
<Birthday>1958-03-09</Birthday>

<SocialSecurityNumber>987-87-
8765</SocialSecurityNumber>

<StartYear>1989</StartYear>
<Department MtRelationship="MemberOf">
<Name>Engineering</Name>
</Department>
</Employee>

</MtContainer>

The element Employee has a new element, Department, that has the element
attribute MtRelationship to specify the relationship between an Employee
object and a Department object. Now you can know to which department each
employee belongs.

Note that Matisse updates the inverse relationship automatically. In the above
example, the Engineering Department object will be connected to the Employee
object for Rio Kay through the relationship Members after the document is
imported.

Also note that the element attribute MtRelationship must appear at the first
place in its XML attribute list.

You may need to deal with multiple cardinality relationships. If for example,
you want to let an employee belong to two departments at the same time, you
will need to add two successor objects through a relationship.

The following example shows how to add two objects of the class Department
through the relationship MemberOf.

XML Example 2 <!—= *** xml example2.4 *** —->

<?xml version="1.0"?2>

<Employee>
<FirstName>Amy</FirstName>

<LastName>Martin</LastName>

<Department MtRelationship="MemberOf">
<Name>Engineering</Name>
</Department>
<Department MtRelationship="MemberOf">
<Name>Sales</Name>
</Department>
</Employee>

16 MATISSE XML Programming Guide

2.5 Using

XML Example

MtPrimaryKey

When the mt _xml utility imports an XML document, it creates by default a new
object for each element representing a class in a database schema. In the XML
example 2.3 in section 2.4, two new objects of the class Employee and two new
objects of the class Department are created in the database.

This is not acceptable when you import an XML document containing, for
example, 20 employees of the department Sales and 10 employees of the
department Engineering. You do not want to create 20 different objects of the
department Sales.

In this case, you can use an instruction in the preprocessor, Mt PrimaryKey, to
specify an object in the database. The value of an element which has the
MtPrimaryKey attribute is considered as a unique value to identify an object.
For example, when using an associated Entry Point Dictionary on a PrimaryKey
attribute:

<?mt_xml version="2" container="yes”
MtPrimaryKey="Classname: :Attribute”
MtEntryPointDictionary="DictionaryName” ?>

The following example shows how to use Mt PrimaryKey when using an
associated Index on a PrimaryKey attribute:

<?mt_xml version="2" container="yes”
MtPrimaryKey="Classname: :Attribute”
MtIndex="IndexName”?>

In the following example, the Department object is identified by its value of the
element Name. When the mt_xm1 utility is importing the employee Amy, no
Department object with a value Sales as its Name exists in the database. Then a
new object of the class Department is created. For the employee Robert, a new
object of the class Department is not created. Instead, the existing object, Sales,
is related to the employee Robert:

<l-— *** xml example2.5 *** —-->
<?xml version="1.0"?>

<?mt_xml version="2" container="yes”
MtPrimaryKey="Department: :Name”
MtIndex="DeptNameIdx”?>

<MtContainer>
<Employee>
<FirstName>Amy</FirstName>

<Department MtRelationship="MemberOf">

<Name>Sales</Name>

Importing XML Documents

17

</Department>
</Employee>

<Employee>

<FirstName>Robert</FirstName>

<Department MtRelationship="MemberOf">
<Name>Sales</Name>
</Department>
</Employee>

</MtContainer>

When you use this Mt PrimaryKey feature, you need to define an entry point
dictionary or index on the Matisse attribute corresponding to the XML element
you put in MtPrimaryKey, as shown in the following ODL. Using an
EntryPointDictionary (ODL):

interface Department : persistent
{
attribute String Name;

mt entry point dictionary DeptNameDict
entry point of Name
make entry function “make entry”;

}i

Using an Index (ODL):

interface Department : persistent
{
attribute String<24> Name;
mt index DeptNameIndex
_criteria {Department: :Name MT ASCEND};
}i

Note that when more than one object is found from a key value specified as
MtPrimaryKey, an error is raised.

2.6 Updating Attributes and Relationships of Objects

Updating When you want to update values of objects, you use the command line option

Attributes -update or the XML attribute MtAction="update” and the MtPrimaryKey
feature together. For example, suppose you need to change the last name of the
employee Amy shown in XML example 2.5. You prepare the XML document
like this:

18 MATISSE XML Programming Guide

Updating
Relationships

<?mt_xml version="2" container="yes”
MtPrimaryKey="Employee: :SocialSecurityNumber”
MtIndex="SSNIdx"”?>

<Employee>
<LastName>Tesler</LastName>
<SocialSecurityNumber>
123-34-4567</SocialSecurityNumber>
</Employee>

And you type the command line:

% mt xml -d database@host import -f xml file --update

Then the mt_xm1 utility searches the object whose social security number is
123-34-4567 and updates the last name attribute of the object. Other attribute
values and relationships remain the same.

Suppose you transfer Amy from the Sales department to the Engineering
department. You will need to update the relationships. You prepare a new XML
document using the Mt PrimaryKey feature like this:

<?mt_xml version="2" container="yes”
MtPrimaryKey="Employee::SocialSecurityNumber”
MtIndex="SSNIdx”
MtPrimaryKey="Department: :Name”
MtIndex="DeptNameIdx”?>

<Employee>
<SocialSecurityNumber>
123-34-4567</SocialSecurityNumber>
<Department MtRelationship="MemberOf”>
<Name>Engineering</Name>
</Department>
</Employee>

This XML document is going to replace the current successor object through
the relationship MemberOf of the Employee Amy object, with the Engineering
department object.

If you want to make Amy belong to two departments at the same time (for
instance, not only the Sales department as specified in XML example 2.3, but
also the Engineering department), you are going to use a the XML attribute,
MtAction, along with MtRelationship to specify the relationship successor
operation. The operation is either “replace”, “append”,
“appendIfNotExist”, “forceAppend” or “removeIfExist”. The default
operation is “replace”. A sample XML document to append the Engineering
department object to Amy through the relationship MemberOf would look like

this:

remove”,

Importing XML Documents

19

clear

replace

append

remove

appendIfNotExist

forceAppend

removelfExist

<?mt_xml version="2" container="yes”
MtPrimaryKey="Employee: :SocialSecurityNumber”
MtIndex="SSNIdx”

MtPrimaryKey="Department: :Name”
MtIndex="DeptNameIdx”?>

<Employee>

<SocialSecurityNumber>123-34-4567
</SocialSecurityNumber>

<Department MtRelationship="MemberOf”
MtAction="append”>
<Name>Engineering</Name>
</Department>
</Employee>

The description of each operation is as follows:

Remove all the current successor objects.

Remove all the current successor objects, and then add the new object
specified in the XML document. This is the default for MtAction.

Add the new object to the end the object specified in the XML document,
while keeping the current successor objects. If the object already exists in
the current successors list, an error is returned.

Remove the object specified in the XML document from the current list of
the successors. If the object does not exist in the current successors list, an
error is returned.

Add the new object to the end the object specified in the XML document
only if the object does not exist in the current list of successors. Keep the
other successor objects in the list.

Add the new object to the end the object specified in the XML document if
the object does not currently exist in the list of successors. If the object
already exists in the current list of successors, first remove the object from
the list and then add the object to the end of the list. Keep the other
successor objects in the list.

Remove the object specified in the XML document from the current list of
the successors only if the object already exists in the list.

Note that the cardinality of the relationship MemberOf in the ODL definition
needs to be updated so an employee can be a member of more than one
department. For example:

relationship Department MemberOf [0, 2]

inverse Department::Members;

20

MATISSE XML Programming Guide

2.7 Deleting Objects

When you want to delete objects, you use the command line option —update
and the Mt PrimaryKey feature together with the XML attribute
MtAction="delete”. For example, suppose you need to remove one
Employee object from the database. You prepare the XML document like this:

<?mt_xml version="2" container="yes”
MtPrimaryKey="Employee::SocialSecurityNumber”
MtIndex="SSNIdx"”?>

<Employee MtAction="delete">

<SocialSecurityNumber>
123-34-4567</SocialSecurityNumber>

</Employee>

And you type the command line:

o)

% mt_xml -d database@host import -f xml file --update

Then the mt _xm1 utility searches the object whose social security number is
123-34-4567 and deletes the object.

2.8 Using the Oid Format

The oid processing instruction declares the oid as the primary key of an object.
This oid value matches the oid of the object in the database for the update
operations. For insert operations, the oid value matches the reference of the
object inside the XML document. The oid value in the XML document is
mapped to the oid of the object created in the database during the import
processing. Just insert the processing instruction line where the value for
prealloc represent the number of objects in the XML document:

<?mt_xml version="2" container="yes" oid="yes"
prealloc="1234"?>

ODL Example /**** odl example ****/

module xmlExample {

interface Document : persistent {
attribute Integer isbn;
attribute String Title;
mt_ index DocIsbnIdx

criteria {Document::isbn MT ASCEND};

relationship Category Genre[O0,1]
inverse Category::Documents;

b

Importing XML Documents 21

interface Category : persistent
{
attribute String<6> Tag;
attribute String Name;
mt index CatTagIdx
criteria {Category::Tag MT ASCEND};

relationship Set<Document> Documents[0,-1]
inverse Document: :Genre;
}i
}i

Creating Suppose you want to create 2 documents of the same category. You prepare a
Objects new XML document using the oid feature like this:

<?mt_xml version="2"
container="yes"
oid="yes"
prealloc="3"7?>

<MtContainer>

<xmlExample.Document oid="1">
<isbn MtBasicType="MT INTEGER">1</isbn>
<title MtBasicType="MT STRING">Document 001 title</title>

</xmlExample.Document>

<xmlExample.Document oid="2">
<isbn MtBasicType="MT INTEGER">2</isbn>
<title MtBasicType="MT STRING">Document 002 title</title>

</xmlExample.Document>

<xmlExample.Category oid="12">

<tag MtBasicType="MT INTEGER">cat001l</tag>

<name MtBasicType="MT STRING">Category 01</name>
<xmlExample.Document oid="1" MtRelationship="Documents"/>
<xmlExample.Document o0id="2" MtRelationship="Documents"/>

</xmlExample.Category>

</MtContainer>
Updating Suppose you want to update the name of an existing category with the oid
Attributes 4255. You prepare a new XML document using the oid feature like this:

<?mt_xml version="2"

22 MATISSE XML Programming Guide

container="yes"
oid="yes"
prealloc="1"?>

<MtContainer>

<xmlExample.Category 0id="4255" MtAction="update">
<name MtBasicType="MT STRING">Category 02 updated</name>
</xmlExample.Category>

</MtContainer>
Updating Suppose you want to link the document with oid 4248 to the category with oid
Re|ationships 4255. You prepare a new XML document using the oid feature like this:

<?mt_xml version="2"
container="yes"
oid="yes"
prealloc="2"?>

<MtContainer>

<xmlExample.Category 0id="4255" MtAction="update">

<xmlExample.Document 0id="4248" MtRelationship="Documents"
MtAction="append"/>

</xmlExample.Category>

</MtContainer>

Suppose you want to remove the link between the document with oid 4251 and
the category with oid 4265. You prepare a new XML document using the oid
feature like this:

<?mt_xml version="2"
container="yes"
oid="yes"
prealloc="2"?>

<MtContainer>

<xmlExample.Category o0id="4265" MtAction="update">

<xmlExample.Document 0id="4251" MtRelationship="Documents"
MtAction="remove"/>

</xmlExample.Category>

</MtContainer>

Suppose you want to remove the links from the category with oid 4265. You
prepare a new XML document using the oid feature like this:

<?xml version="1.0"?2>

Importing XML Documents 23

<!-- Matisse XML Document -->

<?mt_xml version="2"
container="yes"
oid="yes"
prealloc="1"?>

<MtContainer>

<xmlExample.Category 0id="4265" MtAction="update">

<xmlExample.Document o0id="0" MtRelationship="Documents"
MtAction="clear"/>

</xmlExample.Category>

</MtContainer>

Deleting Objects Suppose you want to delete the document with oid 4248 and the category with
0id 4252. You prepare a new XML document using the oid feature like this:

<?mt_xml version="2"
container="yes"
oid="yes"
prealloc="2"?>
<MtContainer>
<xmlExample.Category 0id="4252" MtAction="delete"/>

<xmlExample.Document 0id="4249" MtAction="delete"/>

</MtContainer>

2.9 Matisse List Data Types

Numerical Lists All the Matisse list data types are supported. When a Matisse attribute, for
and Boolean example, NumList, is a numerical list such as MT INTEGER LIST or
Lists MT DOUBLE LIST, the valid XML element has the following format:

<NumList>1 1 2 3 5 8 13</NumList>

If the NumList datatype is MT INTEGER_LIST, the XML element will be stored
as a list containing seven integers.

MT_STRING_LIST When you want to store a string list into a Matisse attribute, for example,
BookTitles, the corresponding XML elements have the following format:

24 MATISSE XML Programming Guide

Other Lists

<BookTitles>Designing XML applications</BookTitles>
<BookTitles>Programming Perl</BookTitles>
<BookTitles></BookTitles>

The Matisse attribute must be MT STRING LIST. The above elements are
stored into a database as a string list that has three string values ("Designing
XML applications", "Programming Perl", and an empty string "").

Other lists include MT TIMESTAMP LIST, MT DATE LIST and

MT_ INTERVAL LIST. The corresponding XML elements have a comma-
separated list of the formatted string of MT TIMESTAMP, MT DATE, or

MT INTERVAL. For example, a list of sunrise times should look like this:

<SunriseTime List>2000-10-12 07:17:00, 2000-10-13 07:19:00,
2000-10-14 07:21:00 </SunriseTime List>

2.10 Matisse Data Types Restriction

For the mt _xm1 utility to properly store XML element values into a database,
you must define exactly one type, or any one type plus the type MT NULL, for
each Matisse attribute.

For example, if the Matisse attribute SocialSecurityNumber has two possible
types, MT _STRING and MT INTEGER, the mt xml utility does not know which
type to use.

In the current implementation, if a Matisse attribute has multiple types, the
mt_xml utility simply selects the first non-MT NULL type and tries to convert
the XML value to the Matisse attribute type.

2.11 Multiple transactions (--commit option)

The mt xml utility has an option --commit <n>. With this option, the utility
stores <n> objects per transaction. For example, if an XML document contains
500000 objects and you specify the option ——commit 20000, the utility
iterates the following procedure until all the objects are loaded into the
database:

1. Start a transaction.

2. Parse up 256 XML objects.

If there is a parsing error, the utility exits with an error message, including
the line number where the error occurs. If each object has a primary key,
objects are sorted alphabetically on their primary key values.

Importing XML Documents

25

3. Store the parsed data into the database and go to step 2 until <n> objects are
stored.
Note that an XML object can composed of multiple objects to be stored in
the database.

If there is a Matisse error, the utility exits with a Matisse error message.
4. Commit the transaction.
If there is a Matisse error, the utility exits with a Matisse error message.

The smaller is the number of objects per transaction, the smaller is the risk of a
transaction blocking other transactions due to index page updates; therefore,
loading multiple XML files in parallel are running faster.

Note that the greater the number of transactions, the more overhead for
transaction management is required.

If the number of objects per transaction is large, the program consumes more
memory space to cache the objects being stored.

2.12 Remapping Namespaces (--fn and --dn options)

The mt_xml utility provides the --£n and --dn options to remap the data from
a source namespace in the XML file into a destination namespace in the
database.

o)

% mt _xml -d database@host import -f <file> --fn proj.appl -
-dn prod.clientl

2.13 Parallel Loading (--parallel option)

The mt_xm1l utility provides the --parallel <n> option to import data with
n tasks running in parallel. The XML data is imported from a multi-segment
XML file. The number of tasks is limited by the number of XML file segments.

% mt xml -d database@host import -f <file> --parallel 6

2.14 Current Limitations

No values of a XML attribute list are stored in a database. They are ignored
except for MtRelationship, MtAction, and MtPrimaryKey.

Even if an XML document contains a DTD, the validity of the XML
document’s content against the DTD is not checked.

26 MATISSE XML Programming Guide

3 Exporting XML Documents

You can export objects in a database in XML format. You can specify objects
by a SQL SELECT statement or by OID.

3.1 Export Using SQL (-sqgl option)

You can use an SQL statement to specify objects to be exported. For example,
to export objects of the class Employee, whose last name starts with S, you

type:

[

$ mt_xml -d database@host export
[-f <file> | --out] --sgl "SELECT * FROM Employee
WHERE LastName LIKE 'S$'"

The double quotation marks surrounding the SQL statement are for escaping

characters such as * (asterisk) or ' (single quotation). The mt xm1l utility reads
all strings following "-sql" until the end of the command line. Instead of using
double quotation marks as in the above example, you may type the following:

)

$ mt_xml -d database@host export
[-f <file> | --out] --sgl SELECT

* FROM Employee WHERE LastName LIKE \'S%\'

Either way, the mt xm1 utility gets the same string as the result of the echo
command of the UNIX shell. For more information about SQL, refer to the
Matisse SOQL Programmer s Guide.

3.2 Export Using OID (--oid option)

To export objects in a database, you type:

)

$ mt_xml -d database@host export
[-f <file> | --out] --oid <oid> ...

The OID can be given either in decimal or in hexadecimal. For hexadecimal
OIDs, the OID must be prefixed by 0x.

3.3 Exporting Primary Keys (--pkoid option)

When exporting using the --sqgl or --oid options discussed above, including
the --pkoid option as well will preserve the objects’ relationship using a
primary key. See the XML example in the following section.

Exporting XML Documents 27

3.4 Exporting Media Data (--emedia option)

When exporting data from the database into an XML document, the media data
are exported in external file located in the same directory as the XML
document. To export media data into the XML document, you now need to add
the -emedia option to the export command.

$ mt_xml -d database@host export
[-f <file> | --out] --emedia --sgl SELECT

* FROM Employee WHERE LastName LIKE \'S%\'

3.5 Splitting XML Data (--size option)

The -s option specifies the XML data file max size therefore splitting XML
data into multiple XML files named <db name> xds_<document id>.xml.
The file size is in Giga bytes.

$ mt_xml -d database@host export
-f <file> --size 2 --sgl SELECT

* FROM Employee WHERE LastName LIKE \'S%\'

3.6 Exporting from a Namespace (--ns option)

The -n option specifies to only export the objects from classes defined inside a
namespace hierarchy.

% mt_xml -d database@host export -f <file> --ns
examples.reports —--full

3.7 Exporting in parallel (--parallel option)

The --parallel <n> option specifies to export data with <n> tasks running in
parallel. The XML data is exported into multiple XML files named
<filename> xds_ a<documentid>.xml and

<filename> xds r<documentid>.xml.

% mt xml -d database@host export -f <file> --parallel 6 --
full

3.8 Exporting the whole Database

Using the -full To export a whole database into a single XML file, use the following command:
option

28 MATISSE XML Programming Guide

mt xml -d database@host export -f xml file --full

It is not necessary to specify the --pkoid option with --full, primary keys
are included automatically.

mt_xml does not export the schema, so to export the entire database content ,
you must use mt_sdl as well. The following commands will export the entire
database and its schema:

mt xml -d database@host export -f data.xml --full
mt sdl -d database@host export --odl -f schema.odl

These commands may be used to transfer a database from one platform to
another, for example from a Windows desktop to a Linux server.

XML example For example, say that a database to be exported contains two objects, an
Employee, and a Department, as well as a relationship between the two objects.
The objects in the database would be exported in OID format as:

<?mt_xml version="2" container="yes"
oid="yes"
prealloc="2"?>

<MtContainer>

<Department o0id="4377">
<Name MtBasicType="MT STRING">Sales</Name>
<Employee 0id="4375" MtRelationship="Members"/>
</Department>
<Employee 0id="4375">
<FirstName MtBasicType="MT STRING">Amy</FirstName>
<LastName MtBasicType="MT STRING">Martin</LastName>
<SSN MtBasicType="MT STRING">123-34-4567</SSN>
<Department 0id="4377" MtRelationship="MemberOf"/>
</Employee>

</MtContainer>

Notes on Before importing, edit the XML file so its preprocessor directive is as follows:
importing

<?mt_xml version="2" container="yes"
MtPrimaryKey="MtClass: :MtName"
MtEntryPointDictionary="MtNameDictionary"?>

When importing, use mt _sdl to load the schema first, then mt xm1 to import
the data as follows:

mt_sdl -d databasel@host import --odl -f schema.odl
mt_xml -d databasel@host import -f data.xml

Exporting XML Documents 29

4 Matisse XML C Programming API

When you want to write your own program to manage XML documents with
Matisse, you can use the Matisse XML C Programming API.

41 Environment

Your program needs to include the C header file matisseXML.h in the directory
SMATISSE HOME/include. The shared library is
SMATISSE _HOME/lib/libmatisseXML.so.

4.2 APl References

All the C API functions begin with the prefix MtXML. Functions taking an
MtOID (an object id) follow the MtXML prefix with an underscore ().
Functions with the prefix MtXML M signify that memory is allocated by the
Matisse XML library.

All of the APIs are listed below:

Error
Synopsis #include “matisseXML.h”
MtString MtXMLError ()
Purpose This function returns the string associated with the last generated Matisse XML
error.
Result A string.
ExportObjects

Synopsis #include “matisseXML.h”
MEXMLSTS MtXML ExportObjects
(MtSize* documentSize,
MtString xmlDocument,
MtSize numObjects,
)
MEXMLSTS MtXML ExportNumObjects

30 MATISSE XML Programming Guide

(MtSize* documentSize,
MtString xmlDocument,
MtSize numObjects,
MtOID* objects)

MtXMLSTS MtXML MExportObjects
(MtSize* documentSize,
MtString* xmlDocument,
MtSize numObjects,

-)

MEXMLSTS MtXML MExportNumObjects
(MtSize* documentSize,
MtString* xmlDocument,
MtSize numObjects,
MtOID* objects)

Purpose These functions export objects that are stored in a database. The objects are
exported in XML format.
Arguments documentSize INPUT/OUTPUT

In input, specifies the size of the string space specified by the user. Can be used
as an input argument only by those functions—MtXML _ExportObjects and
MtXML ExportNumObjects—that do not allocate memory for the string.

In output, gives the length of the string written.

xmlDocument OUTPUT/INPUT

For those functions—MtXML _ExportObjects and

MtXML _ExportNumObjects—that do not allocate memory, this argument is a
string space allocated in the calling program. After the function is called, this
string will contain the XML document.

For those functions—MtXML MExportObjects and

MtXML MExportNumObjects—that allocate memory, this argument is a
pointer to a string allocated by the functions. In this case, the program must
declare an MtString. After declaring it, the program must pass its address as the
argument to the function.

In output, it contains the string of the exported XML document.

numObjects INPUT

The number of objects to be exported.

objects INPUT

The array of objects to be exported

Other INPUT The argument numObjects must be followed by the objects (type MtOID) to be
Arguments exported.

Matisse XML C Programming API 31

Result

Description

Failure

Free

Synopsis

Purpose

Arguments

Result

Synopsis

Purpose

Arguments

MTXML_SUCCESS
MTXML_NOTENOUGHSPACE
MTXML_NULLPOINTER
MTXML_TYPENOTSUPPORTED
MTXML_MATISSE ERROR
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND

The functions MtXML_ExportObjects and MtXML ExportNumObjects do not
allocate a string space to store the XML document of specified objects. The
program that calls them must allocate adequate string space.

The functions MtXML MExportObjects and MtXML MExportNumObjects
allocate a string space to store the XML document of specified objects. When
calling these functions, a program must pass as its xmlDocument argument the
address of a string. In output, this argument will point to a string that contains
the XML document. To free the memory space allocated for the string, the
program must call the function MtXMLMFree.

This function can be called inside a transaction or during a version access.

#include “matisseXML.h”
int MtXMLFailure (MtXMLSTS status)

This macro indicates whether a Matisse XML function has completed
successfully (see also, Success).

status INPUT

The status returned by a Matisse XML function.

Zero (0) if the status corresponds to a success; a non-null integer otherwise.

#include “matisseXML.h”
MtXMLSTS MtXMLMFree (void* value)

This function frees the memory allocated by the functions that allocate memory
(MtXMLM* and MtXML _ M¥*).
value INPUT

A value allocated by one of the functions that allocate memory (MtXMLM#*
and MtXML M#*).

32

MATISSE XML Programming Guide

Result MTXML_SUCCESS

Description When the program calls one of the Matisse XML functions that begin with the
letters MtXMLM or MtXML M, Matisse XML allocates memory to store the
value. When the value is not needed anymore, the program must free the value
with this function.

ImportXML

Synopsis #include “matisseXML.h”
MtXMLSTS MtXMLImportXML

(MtSizex* numReadObjects,

MtSizex* numCreatedObjects,

MtOID* readObjs,

MtOID* createdObjs,

MtString xmlDocument,

MtBoolean pkUpdate)
MEXMLSTS MtXMLEFImportXML

(MtSize* numReadObjects,

MtSizex* numCreatedObjects,

MtOID* readObjs,

MtOID* createdObjs,

FILE* xmlFile,

MtBoolean pkUpdate)
MEXMLSTS MtXMLMImportXML

(MtSize* numReadObjects,

MtSizex* numCreatedObjects,

MtOID** readObijs,

MtOID** createdObjs,

MtString xmlDocument,

MtBoolean pkUpdate)
MEXMLSTS MtXMLMFImportXML

(MtSize* numReadObjects,

MtSize* numCreatedObjects,

MtOID** readObjs,

MtOID** createdObjs,

FILE* xmlFile,

MtBoolean pkUpdate)

Purpose These functions read an XML document and store it as objects in a database.

Arguments numReadObjects OUTPUT

The number of objects which are parsed in the xmlDocument. Can be set to
NULL, in which case the function simply does not return this number.

Matisse XML C Programming API

33

Result

Description

numCreatedObjects OUTPUT

The number of objects which are parsed in the xmIDocument and newly created
in a database.

Can be set to NULL, in which case the function simply does not return this
number.

readObjs OUTPUT

An array containing all the OIDs of parsed objects. They include both newly
created objects and existing objects. (Existing object: object found through
entry-point from a given MtPrimaryKey value.)

createdObijs OUTPUT

An array containing all the OIDs of new objects created.

xmlDocument INPUT

A string containing an XML document.

xmlFile INPUT

A file containing an XML document.

pkUpdate INPUT

This parameter indicates whether the values of the object have to be updated if
the object already exists in a database.

MTXML SUCCESS

MTXML INVALXML

MTXML NULLPOINTER

MTXML TYPENOTSUPPORTED

MTXML MATISSE ERROR
MATISSE NOSUCHCLASS

The numbers numReadObjects and numCreatedObjects returned by the
functions count only top-level objects, not including nested objects. For
example, the following XML document contains two top-level objects of class
person. The person object named Brian Watts is not counted.

<person>
<name>John Smith</name>
<person>
<name>Brian Watts</name>
</person>
</person>
<person>
<name>Tom Lehman</name>

</person>

34

MATISSE XML Programming Guide

An XML document can specify an object in a database by using the
MtPrimaryKey attribute in the XML document (see section 2.4, Using the
MtPrimaryKey Keyword). When an object is found in a database according to
the MtPrimaryKey, the values of the object are updated if the argument
pkUpdate is set to MT_TRUE. If the argument pkUpdate is MT FALSE, the
values of the object are not updated.

This function can be called only inside a transaction.

MATISSEError

Synopsis #include “matisseXML.h”
MtSTS MtXMLMATISSEError ()

Purpose When one of the Matisse XML functions returns the error status
MTXML MATISSE ERROR, this function returns the status of the last
generated Matisse error.

Result A Matisse error status.

Description The Matisse XML functions use the Matisse C API functions to access a
database. When one of these Matisse C API functions returns an error, the
Matisse XML function returns the error MTXML MATISSE ERROR. To get
the Matisse error status, use this function.

Example If the function MtXML_ExportObjects is called without opening a transaction
or starting a version access, it returns the error MTXML MATISSE ERROR
because it can not access the database. In this case, the function
MtXMLMATISSEError returns the Matisse error
MATISSE NOTRANORVERSION, which indicates “Attempt to access objects
without a transaction or version access.”

Success

Synopsis #include “matisseXML.h”
int MtXMLSuccess (MtXMLSTS status)

Purpose This macro indicates if a Matisse XML function has executed successfully (see
also, Failure).

Arguments status INPUT

The status returned by a Matisse XML function.

Result Zero (0) if the status corresponds to a failure; a non-null integer otherwise.

Matisse XML C Programming API 35

4.3 Types and Errors

An enumeration type MtXMLSTS is defined for the Matisse XML error status.
This section lists the errors that may result from the use of the Matisse XML
functions:

MTXML INVALXML

Description The given XML document is not a valid XML document. This error occurs
when calling one of the following functions:

MtXMLImportXML
MtXMLImportXMLFile

Solution Correct a syntax error in the XML document.

MTXML MATISSE ERROR

Description There is an error related to Matisse functions. This error occurs when calling
one of the following functions:

MEXML ExportObjects
MtXML ExportNumObjects
MtXML MExportObjects
MEXML MExportNumObjects
MtXMLImportXML
MtXMLImportXMLFile

MTXML NOTENOUGHSPACE

Description There is not enough space to copy data. This error occurs when calling one of
the following functions:

MtXML ExportObjects
MEXML ExportNumObjects
Matisse XML attempts to copy the data into the space allocated by the user.

The pointer and the size are specified in the arguments. Matisse XML has
insufficient space to copy the data.

Solution Increase the memory space passed to the function until there is a sufficient
amount for the data being exported.

36 MATISSE XML Programming Guide

MTXML NULLPOINTER

Description Null pointer: A null pointer is specified as an argument, while this pointer
should not be null.

MTXML SYSTEMERROR

Description This error should never happen, but it might occur after a call to a Matisse
XML function.

Solution Contact your software support center.

MTXML TYPENOTSUPPORTED

Description The type of Matisse attribute is not supported. This error could occur when
calling one of the following functions:

MtXML ExportObjects
MtXML ExportNumObjects
MtXML MExportObjects
MtXML MExportNumObjects
MtXMLImportXML
MtXMLImportXMLFile

Solution Contact your software support center.

Matisse XML C Programming API

37

5 Programming API for Internal
Obijects

The functions listed in this section provide the interface to access the internal
object representation of a parsed XML document. You will find an example
program to enumerate all objects in an XML document in section 5.3.

51 Environment

Your program needs to include the C header file matisseXMLinternal.h in the
directory SMATISSE_ HOME/include. The shared library is
$MATISSE HOME/lib/libmatisseXML.so.

5.2 API References

CloseInputStream

Synopsis #include “matisseXMLinternal.h”

MtXMLSTS MtXMLCloseInputStream
(MtXMLStream xmlStream)

Purpose This function closes the stream that is pointed at by xmlStream.

Arguments xmlStream INPUT
An XML stream.

Result MTXML SUCCESS
MTXML_INVALSTREAM

FreeObjectRep
Synopsis #include “matissexMLinternal.h”
MtXMLSTS MtXMLFreeObjectRep
(MtXMLObjElement* objectRep)

Purpose This function frees a previously allocated internal object structure.

Arguments objectRep INPUT

38 MATISSE XML Programming Guide

An object representation to be freed.
Result MTXML_SUCCESS

Description An object structure allocated by the function MtXMLNextObjectRep must be
freed using this function when the object is not needed any more.

NextObjectRep

Synopsis #include “matissexMLinternal.h”
MtXMLSTS MtXMLNextObjectRep
(MtXMLStream xmlStream,
MtXMLObjElement* objectRep)

Purpose This function returns the next internal object representation in the stream (see
also, FreeObjectRep).

Arguments xmlStream INPUT
An XML stream.

objectRep OUTPUT

The subsequent object in the stream, or undefined if there is no subsequent
element.

Result MTXML_SUCCESS
MTXML ENDOFSTREAM
MTXML INVALSTREAM

Description The following XML document, for example, contains two objects of the class
person. The first and second call of this function on the stream of the XML
document return a person object named John Smith who has a friend, Brian
Watts, and a person object named Tom Lehman respectively. The third call of
this function returns the error status MTXML ENDOFSTREAM since there is
no subsequent element.

<?xml version="1.0"7?>
<person>
<name>John Smith</name>
<person MtRelationship="friend”>
<name>Brian Watts</name>
</person>
</person>
<person>
<name>Tom Lehman</name>

</person>

Programming AP for Internal Objects 39

The content of the object representation is allocated by the Matisse XML.
When you do not need the object any more, you need to free the object using
the function MtXMLFreeObjectRep.

OpenInputStream

Synopsis #include “matisseXMLinternal.h”
MtXMLSTS MtXMLOpenInputFileStream
(MtXMLStream* xmlStream,
FILE* file)
MtXMLSTS MtXMLOpenInputStringStream
(MtXMLStream* xmlStream,
MtString string)

Purpose These functions open an XML stream, xmlStream, on a file or a string. The
function MtXMLNextObjectRep uses the stream to provide the user with the
internal representation of objects that are created by parsing an XML document.

Arguments xmlStream OUTPUT

The stream of internal object representation.

file INPUT

A file containing an XML document.

string INPUT

A string containing an XML document.

Result MTXML_SUCCESS
MTXML_NULLPOINTER

5.3 Classes and Types

The type MtXMLStream represents a stream used to manipulate objects. The
object representation returned by the function MtXMLNextObjectRep is
constructed using the following file classes:

class MtXMLElement

class MtXMLAttElement
class MtXMLRelElement
class MtXMLObjElement
class MtXMLAttribute

40 MATISSE XML Programming Guide

MtXMLElement

Synopsis #matisseXMLinternal.h
class MtXMLElement

Description This class is a pure abstract base class for the other three classes,
MtXMLAttElement, MtXMLRelElement, and MtXMLObjElement.

Members MtString tagName
Name of the XML element’s start-tag.

MtSize numXmlAttributes

Number of XML attributes in the XML element.

MtXMLAttribute** xmlAttributes
Array of XML attributes

MtXMLObjElement

Synopsis #matisseXMLinternal.h
class MtXMLObjElement : public MtXMLElement

Description This object represents an object holding attributes and relationships. The
tagName of the object indicates its class name.

Example To enumerate all objects in an XML file:

MtXMLObjElement* oRep;

MtXMLStream stream;
MEXMLSTS xsts;
FILE* file;

// A file is opened and assigned to 'file'.
// CHECK_XMLSTS is a macro to check the return
// status of Matisse XML functions.
CHECK_XMLSTS (MtXMLOpenInputFileStream(&stream, file));
oRep = new MtXMLObjElement;
for (xsts = MtXMLNextObjectRep (stream, oRep) ;
MtXMLSuccess (xsts) ;
xsts = MtXMLNextObjectRep (stream, oRep)) {
// Do something on 'oRep'
CHECK XMLSTS (MtXMLFreeObjectRep (oRep)) ;
oRep = new MtXMLObjElement;
}
CHECK_XMLSTS (MtXMLFreeObjectRep (oRep)) ;
if (xsts != MTXML ENDOFSTREAM) {

Programming AP for Internal Objects

41

// If the last error status is not
// MTXML ENDOFSTREAM, you need to check

// this error status.

CHECK XMLSTS (xsts);

Members MtSize numAttributes

Number of attributes that the object has.

MtXMLAttElement** attributes

Array of attributes.

MtSize numRelationships

Number of relationships that the object has.

MtXMLRelElement** relationships

Array of relationships.

Methods MtXMLObjElement ()

The constructor.

MtString GetElementValue (MtString tag)

This method returns a copy of the string value of the XML element named tag
which can be found first. If the element has no value, it returns an empty string
(""). If such an element is not found, it returns NULL.

MtString GetPrimaryKey ()

This method returns a copy of the string value of the primary key element of
the object. If the primary key element is found but has no value, an empty
string ("") is returned. If the object has no primary key element, NULL is
returned.

MtString GetPrimaryKeyElement ()

This method returns a copy of the element’s tag name, which is the primary key
of the object. If the object has no primary key element, NULL is returned.

MtXMLAttElement

Synopsis #matisseXMLinternal.h
class MtXMLAttElement : public MtXMLElement

Description This object represents a Matisse attribute holding a value. The tagName of this
object indicates a Matisse attribute name.

Members MtString value

Value of the Matisse attribute.

42 MATISSE XML Programming Guide

MtBoolean isPrimaryKey

This member indicates whether the value of the object is considered as a
primary key to specify an object in a database.

Refer to section 2.4 for more information about the PrimaryKey.

MtXMLRelElement

Synopsis #matisseXMLinternal.h
class MtXMLRelElement : public MtXMLElement

Description This object represents a Matisse relationship holding its relationship name and
a successor object. The tagName of the object indicates the class name of its
successor object.

Members MtString relationshipName

Name of the Matisse relationship.

MtXMLObjElement* successor

A successor object.

MtXMLAttribute

Synopsis #matisseXMLinternal.h
class MtXMLAttribute

Description This object represents an XML attribute that can be held by instances of the
classes MtXMLAttElement, MtXMLRelElement, or MtXMLObjElement.

Members MtString name
Name of the XML attribute.

MtString value
Value of the XML attribute.

54 Errors

MTXML ENDOFSTREAM

Description End of stream - all values enumerated

Programming AP for Internal Objects 43

This error, which can occur when there is a stream enumeration (function
MtXMLNextObjectRep), indicates that the enumeration is over: all the
elements of the stream have been visited.

Solution Close the stream.

MTXML INVALSTREAM

Description Stream is not a valid stream

This error occurs when calling one of the following functions if the stream
specified as an argument does not correspond to a valid opened stream (the
stream may have been already closed):

MtXMLNextObjectRep
MtXMLCloseInputStream

44 MATISSE XML Programming Guide

Index

Symbols

$SMATISSE_HOME/bin 8

SMATISSE _HOME/include 30, 38
$SMATISSE_HOME/lib/libmatisseXML.so 30, 38

A
API for internal objects 38
environment 38
API for MATISSE XML C
memory allocation 32
MtXML prefix 30
MtXML M prefix 30
attribute types
Boolean 12
date 12
integer 10
interval 13
MT_CHAR 12
MT _STRING 11
real number 11

timestamp 12

D

database schema 9
document type definition (DTD) 9

E

exporting XML documents 27, 30-32

I
importing XML documents 9, 33-35

L

lists
Boolean 24

numerical 24

other 25
string 24

M
matisseXML.h 30
matisseXMLinternal.h 38
MT NULL 25
mt_xml utility
-commit <n> option 25, 26
definition of 7
importing multiple objects 13
processing instruction 13
standard input 8
standard output 8
status messages 8
status report 8
using 8
mt_xml replication utility
location 8
MtAction 26
MtPrimaryKey 17-20, 26
MtRelationship 16, 26
MtXML _ExportNumObjects 31
MtXML ExportObjects 31
MtXML MExportNumObjects 31
MtXML MExportObjects 31
MtXMLMFree 32
MtXMLStream 40
MtXMLSTS 36
MtXMLSuccess 35

N

null pointer 37

(0

objects
updating attributes of 18, 21

Index

45

updating relationships of 19, 22, 23, 24
ODL document

example 2.1 9

example 2.2 14, 21
OIDs 27

P
pkUpdate 35

R

relationship successor operations
append 20
appendIfNotExist 20
forceAppend 20
remove 20
removelfExist 20
replace 20

relationships, updating 14

S

-sql 27

SQL statement to specify objects to be exported 27
storing in a database 9

U
-update 18, 21

X
XML 30
XML C Programming API 30
XML document
example 2.1 9
example 2.2 13
example 2.3 15
example 2.4 16
example 2.5 17
exporting 27, 30-32
by OID 27
by SQL 27
importing 9, 33-35
current limitations 26
example 9
parsing 33
reading and storing 33
internal object representation 38
parsing 40
XML document file
exporting from database 8
importing to database 8

46

MATISSE XML Programming Guide

Index

47

	Matisse® XML Programming Guide
	Contents
	Tables
	Introduction
	Intended Audience
	Conventions

	1 Using the XML Utilities
	1.1 The mt_xml Utility
	Return Status
	Location

	2 Importing XML Documents
	2.1 A Simple Example
	XML Example
	ODL Example

	2.2 Attribute Values
	Integer
	Real Number
	MT_STRING
	MT_CHAR
	Boolean
	Date
	Timestamp
	Interval

	2.3 Importing Multiple Objects
	XML Example

	2.4 Using Relationships
	ODL Example
	XML Example 1
	XML Example 2

	2.5 Using MtPrimaryKey
	XML Example

	2.6 Updating Attributes and Relationships of Objects
	Updating Attributes
	Updating Relationships
	clear
	replace
	append
	remove
	appendIfNotExist
	forceAppend
	removeIfExist

	2.7 Deleting Objects
	2.8 Using the Oid Format
	ODL Example
	Creating Objects
	Updating Attributes
	Updating Relationships
	Deleting Objects

	2.9 Matisse List Data Types
	Numerical Lists and Boolean Lists
	MT_STRING_LIST
	Other Lists

	2.10 Matisse Data Types Restriction
	2.11 Multiple transactions (--commit option)
	2.12 Remapping Namespaces (--fn and --dn options)
	2.13 Parallel Loading (--parallel option)
	2.14 Current Limitations

	3 Exporting XML Documents
	3.1 Export Using SQL (-sql option)
	3.2 Export Using OID (--oid option)
	3.3 Exporting Primary Keys (--pkoid option)
	3.4 Exporting Media Data (--emedia option)
	3.5 Splitting XML Data (--size option)
	3.6 Exporting from a Namespace (--ns option)
	3.7 Exporting in parallel (--parallel option)
	3.8 Exporting the whole Database
	Using the -full option
	XML example
	Notes on importing

	4 Matisse XML C Programming API
	4.1 Environment
	4.2 API References
	Error
	Synopsis
	Purpose
	Result

	ExportObjects
	Synopsis
	Purpose
	Arguments
	Other INPUT Arguments
	Result
	Description

	Failure
	Synopsis
	Purpose
	Arguments
	Result

	Free
	Synopsis
	Purpose
	Arguments
	Result
	Description

	ImportXML
	Synopsis
	Purpose
	Arguments
	Result
	Description

	MATISSEError
	Synopsis
	Purpose
	Result
	Description
	Example

	Success
	Synopsis
	Purpose
	Arguments
	Result

	4.3 Types and Errors
	MTXML_INVALXML
	Description
	Solution

	MTXML_MATISSE_ERROR
	Description

	MTXML_NOTENOUGHSPACE
	Description
	Solution

	MTXML_NULLPOINTER
	Description

	MTXML_SYSTEMERROR
	Description
	Solution

	MTXML_TYPENOTSUPPORTED
	Description
	Solution

	5 Programming API for Internal Objects
	5.1 Environment
	5.2 API References
	CloseInputStream
	Synopsis
	Purpose
	Arguments
	Result

	FreeObjectRep
	Synopsis
	Purpose
	Arguments
	Result
	Description

	NextObjectRep
	Synopsis
	Purpose
	Arguments
	Result
	Description

	OpenInputStream
	Synopsis
	Purpose
	Arguments
	Result

	5.3 Classes and Types
	MtXMLElement
	Synopsis
	Description
	Members

	MtXMLObjElement
	Synopsis
	Description
	Example
	Members
	Methods

	MtXMLAttElement
	Synopsis
	Description
	Members

	MtXMLRelElement
	Synopsis
	Description
	Members

	MtXMLAttribute
	Synopsis
	Description
	Members

	5.4 Errors
	MTXML_ENDOFSTREAM
	Description
	Solution

	MTXML_INVALSTREAM
	Description

	Index

