
Matisse® SQL
Programmer’s Guide

January 2017

Matissse SQL Programmer’s Guide

Copyright © 2017 Matisse Software Inc. All Rights Reserved.

This manual and the software described in it are copyrighted. Under the
copyright laws, this manual or the software may not be copied, in whole or in
part, without prior written consent of Matisse Software Inc. This manual and
the software described in it are provided under the terms of a license between
Matisse Software Inc. and the recipient, and their use is subject to the terms of
that license.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c)(l)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-
7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. and
international patents.

TRADEMARKS: Matisse and the Matisse logo are registered trademarks of
Matisse Software Inc. All other trademarks belong to their respective owners.

PDF generated 7 January 2017

Tables 3

Tables

Table 1.1 Command Line Options . 15
Table 2.1 Matisse SQL Reserved Words. 23
Table 3.1 Comparison of OID and REF(). 28
Table 3.2 AND Operator Truth Table . 39
Table 3.3 OR Operator Truth Table . 39
Table 3.4 Equivalent Logical Expressions . 40
Table 4.1 Comparison Operators. 62
Table 4.2 Bitwise Operators . 63
Table 4.3 Types Resulting from Arithmetic Operation 64
Table 4.4 Type Resulting from the Negation Operation. 65
Table 5.1 IS [NOT] NULL. 68
Table 6.1 Text Comparison Operators . 69
Table 6.2 ASCII Characters and Their Numeric Values. 70
Table 6.3 Equivalent Expressions Using ANY and ALL 74
Table 10.1 Supported casts between built-in data types 108

Contents

Introduction. 11
Conventions. 11

1 SQL Query Analyzer and mt_sql Utility .12
1.1 SQL Query Analyzer . 12
1.2 Simple Example with mt_sql . 14
1.3 Basic Usage . 14
1.4 Command Line Options . 15
1.5 Online Help . 16
1.6 Discovering the Schema . 16

2 Constants and Identifiers .18
2.1 What Is a Constant? . 18

Integer Constants . 18
Numeric Constants . 18
Real Constants . 19
Boolean Constants . 19
Character String Constants . 19
Date and Timestamp Constants . 20
Time Interval Constants. 21
Bytes Constants. 22
List Constants . 22

2.2 What Is an Identifier? . 22
2.3 Matisse SQL Reserved Words . 23

3 Selecting Data .25
3.1 Using the SELECT Command . 25

Using the ONLY Keyword . 26
Specifying a SQL Projection . 26
List Types in SQL Projection . 27
Aliases in SQL Projection . 27
OID, and Relationship in SQL Projection. 27
REF() in SQL Projection . 28
SQL Methods in SQL Projection . 29
Get a Successor at a Position in a Relationship 30
Pseudo Attributes . 30
Pseudo Relationships . 31

3.2 Join Operation . 33
Natural Join . 34
Conditional Join . 34
Sorting the Result . 35

3.3 Using SQL Selections . 35
4 Matissse SQL Programmer’s Guide

Create an SQL Selection. 35
Select from SQL Selections . 35
Selection Class . 36
Delete a Selection . 37

3.4 Specifying a Search Criteria with WHERE . 37
3.5 Using Attributes in Expressions . 38

Specifying an Attribute in a WHERE Clause 38
3.6 Combining Predicates with AND and OR . 38

Precedence of Evaluation of AND and OR 39
3.7 Specifying a Negative Condition with NOT . 40
3.8 Specifying a Type Predicate with IS OF . 41
3.9 Specifying UNFILTERED . 42
3.10 Navigation Filtering with FILTERED . 42

Matching Predicates . 44
Matching Predicates with Composition . 44
Unmatching Predicates . 45
Filtering and Reordering Relationship with REF() 45
Relationship COUNT. 46

3.11 Getting DISTINCT Values . 47
3.12 Specifying Sort Criteria with ORDER BY . 48
3.13 Filtering with HAVING . 49

Filtering List Type Values . 50
Aggregate Values from SQL Methods. 51

3.14 Grouping with GROUP BY . 53
Grouping by Class. 54
Grouping with Navigation . 54
Grouping by Composition . 55

3.15 Filtering with HAVING in GROUP BY . 56
GROUP BY / HAVING with Navigation . 56

3.16 LIMIT and OFFSET . 58
3.17 Subqueries . 59

Subquery for Comparison . 59
Subquery used with IN . 59
Subquery with EXISTS . 60

3.18 Specifying PARALLEL . 61

4 Using Numeric Values . 62
4.1 Introduction . 62
4.2 Comparison Operators . 62
4.3 Bitwise Operators . 63
4.4 Performing Arithmetic Operations . 63

Expressions and Arithmetic Operators . 63
Evaluating an Expression: An Example . 64

4.5 Result Types from Arithmetic Expressions . 64
4.6 Performing an Interval Test . 65
Contents 5

4.7 Using the ANY and ALL Keywords . 66

5 Using Null Values .67
5.1 Introduction . 67
5.2 What Is a Null Value? . 67
5.3 The IS NULL Keyword . 67

Example: Comparison with Null Values. 67

6 Using Text Values .69
6.1 Introduction . 69
6.2 What Does Text Comparison Mean? . 69
6.3 What Is a Pattern? . 71
6.4 How to Use the % Wildcard Character . 71
6.5 How to Use the Underscore Wildcard Character 72
6.6 Specifying a Pattern with the LIKE Keyword 72
6.7 How to Use an Escape Character . 73
6.8 Using the ANY and ALL Keywords . 74

Quantified Comparison with the ANY Keyword 74
Comparison with the ALL Keyword . 74
Equivalent Comparisons . 74
Alternate Syntax . 75
Examples . 75

6.9 Selecting Objects by Entry Points . 75
Exact Match Search. 76
Pattern Matching . 76

7 Using Relationships .77
7.1 Introduction . 77
7.2 What Is a Relationship? . 77
7.3 Positional Access . 77
7.4 Navigational Queries . 78

Using a Single Relationship in the Select-list 78
Using Relationships and Other Columns in the Select-list 78
Using a Relationship in the WHERE Clause 79
Relationship COUNT . 79
Dealing with Empty Relationships . 80

7.5 The IN Keyword . 80
Comparing with a List of Successors. 81

8 Version Travel .82
8.1 Introduction . 82
8.2 Specifying a Version Travel Query . 82

9 Managing Transactions and Versions .84
9.1 Introduction . 84
9.2 Starting a Version Access . 84
9.3 Ending a Version Access . 85
6 Matissse SQL Programmer’s Guide

9.4 Starting a Transaction . 85
9.5 Committing a Transaction . 85
9.6 Cancelling a Transaction . 86

10 SQL Functions . 87
10.1 Expressions Functions . 87

COALESCE . 87
NULLIF . 88

10.2 Character String Functions . 88
CONCAT . 88
INSTR . 89
LEFT . 90
LENGTH . 90
LOCATE . 91
LOWER . 91
LPAD . 91
LTRIM . 92
REPLACE . 93
REPLICATE . 93
REVERSE . 93
RIGHT . 94
RPAD . 94
RTRIM . 95
SUBSTR . 95
TRIM . 96
UPPER . 97

10.3 List Functions . 97
AVG . 98
ELEMENT . 98
MAX . 99
MIN . 99
SUBLIST . 99
SUM . 100
COUNT . 101
LIST . 101

10.4 Set Functions . 101
AVG . 101
COUNT . 102
MAX . 102
MIN . 103
SUM . 103

10.5 Set functions for relationship aggregation . 104
AVG . 105
COUNT . 105
MAX . 105
Contents 7

MIN . 106
SUM . 106

10.6 Datetime Functions . 106
CURRENT_DATE . 106
CURRENT_TIMESTAMP . 107
EXTRACT . 107

10.7 Conversion Functions . 107
CAST . 108

10.8 Numeric Functions . 109
BIT_COUNT . 110
ABS . 110
ACOS . 110
ASIN . 111
ATAN . 111
ATAN2 . 111
CEILING . 111
COS . 111
COT . 111
DEGREES . 112
EXP . 112
FLOOR . 112
LN. 112
LOG10 . 112
LOG2 . 112
LOG . 113
MOD . 113
PI. 113
POWER . 113
RADIANS . 113
ROUND . 113
SIGN . 114
SIN . 114
SQRT . 114
TAN . 114
TRUNCATE . 114

11 Defining a Schema .115
11.1 Namespaces . 115

CREATE . 115
ALTER . 116
DROP . 116
CURRENT_NAMESPACE . 117

11.2 Classes, Attributes, and Relationships . 117
CREATE . 117
ALTER . 123
8 Matissse SQL Programmer’s Guide

DROP . 126
11.3 Indexes . 126

CREATE . 126
DROP . 127

11.4 Entry Point Dictionaries . 128
CREATE . 128
DROP . 129

11.5 Methods . 129
CREATE . 130
DROP . 132
COMPILE . 133

12 Manipulating Data . 134
12.1 Inserting Data . 134

INSERT . 134
12.2 Updating Data . 135

UPDATE . 135
12.3 Deleting Data . 138

DELETE . 138
12.4 Auto Increment Attribute . 139

13 Stored Methods and Statement Blocks 140
13.1 A Simple Example . 140
13.2 Method Invocation . 141

Calling a Method in SELECT Statement 141
Calling a Method in Method Body . 141
Calling a Method with LOOKUP . 143
Calling a Static Method . 143
Static Method and Query Optimization . 143
Calling a Method in a Superclass . 144
Calling a Method returning a Table . 144

13.3 Update Object in a Method . 144
13.4 Control Statements . 145

IF Statement. 145
LOOP Statement . 146
REPEAT statement . 147
WHILE Statement . 147
FOR Statement . 148
LEAVE Statement . 149
ITERATE Statement . 150
RETURN Statement . 151
SET Assignment Statement. 151
SIGNAL Statement . 152
RESIGNAL Statement . 152

13.5 Selections in the Server . 153
Construct for Selections . 153
Contents 9

Methods for Selections . 154
ADD . 155
ADD_ALL . 155
CLEAR . 156
CONTAINS . 156
COUNT . 156
GET . 156
INSERT . 157
REMOVE . 158
REMOVE_AT . 158
REMOVE_DUPLICATES . 159
SET . 159

13.6 Statement Blocks . 159
Variable Declaration . 160
Direct Execution of Statement Block . 160
Returning Objects from Statement Block. 161
Returning a Table from Statement Block. 161

13.7 Exception Handling . 162
Declaration of Handler . 162
Handler Types . 162
User Defined Exceptions . 163
Unhandled Exception. 164

13.8 Using Lists . 164
Access using brackets . 164
Set list assignment. 165
ADD . 165
INSERT . 165
REMOVE . 166
Using other list functions . 166

13.9 System Defined Methods . 167
13.10 Debugging Methods . 167

PSM_OUTPUT . 167

14 Options .169
14.1 Setting Options . 169

MEMORY_QUOTA . 169
CONNECTION_OPTION. 169

Appendix A 172

Appendix A Sample Application Schema .173

Appendix B Using Matisse SQL with C-APIs 176

Index . 178
10 Matissse SQL Programmer’s Guide

Introduction 11

Introduction

This manual describes the syntax and usage of the Matisse SQL language.
Matisse SQL allows you to write reusable server components to build
application business logic, select a set of objects that meet certain criteria
regarding the attribute values or the relationships, and update objects.

Conventions
This document uses the following conventions:

Text

The running text is written in characters like these.

Code

All computer variables, code, commands, and interactions are shown in this
font.

variable

In a program example, or in an interaction, a variable, which means
anything that is dependent on the user environment, is written in italics.

KEYWORD

In syntax descriptions, an SQL keyword always appears in uppercase
Courier.

{ANY|ALL}

In syntax descriptions, curly braces are used to enclose two or more choices
among different keywords or expressions. The choices themselves are
separated by a vertical bar |.

[id|keyword]

In syntax descriptions, brackets are used to enclose one or more optional
keywords or expressions. If there are two or more choices, they are
separated by a vertical bar |, and you can specify only one.

References

References to another part of the Matisse documentation are made as shown
here.

1 SQL Query Analyzer and mt_sql
Utility

The SQL Query Analyzer in the Matisse Enterprise Manager is the graphical
environment which allows you to execute SQL statements and define SQL
methods (stored procedures). The mt_sql utility is Matisse’s command-line
interface allowing you to interactively execute SQL statements and display the
result.

1.1 SQL Query Analyzer
Start the Enterprise Manager (double click the Enterprise Manager icon, start--
>Programs-->Matisse-->Enterprise Manager, or type mt_emgr from a command
line), select a database, start the database if it has not started yet, open the
‘Data’ node, then select ‘SQL Query Analyzer’.
12 Matisse SQL Programmer’s Guide

Enter SQL statement(s), and click the execute button to execute the
statement(s).

You can enter a single SQL statement or multiple SQL statements. For multiple
statements, each statement needs to be terminated with a semi-colon “;”.

Online Help is available for SQL statement’s syntax, types, program controls,
and templates. Right-click in the SQL query editor window:
SQL Query Analyzer and mt_sql Utility 13

For more information about the Matisse Enterprise Manager, refer to the
“Discovering Matisse Enterprise Manager” document which is accessible from
the Matisse Readme file (readme.html) or the Matisse Server Administration
Guide.

1.2 Simple Example with mt_sql
The following is a simple example of using the mt_sql utility for creating a
class, inserting and accessing objects:

% mt_sql -d my_db@my_host

sql> CREATE CLASS movie (

 title STRING,

 rating STRING

);

sql> COMMIT;

sql> INSERT INTO movie (title, rating)

VALUES ('Rocky', 'R');

sql> COMMIT;

sql> SELECT * FROM movie;

OID title rating

------------------ ------------------- -------------------

0x1047 Rocky R

1 objects selected

sql> quit;

More details are explained in the following sections.

1.3 Basic Usage
An SQL statement can be a single line or can be divided into multiple lines. It
must be terminated by a semicolon (;) in either case. For example,

sql> SELECT lastName, firstName

2> FROM artist

3> WHERE lastName LIKE 'S%';

You can exit mt_sql with the command quit:

 sql> quit;

If you execute an SQL statement and no transaction or read-only access is
started explicitly, mt_sql starts a read-only access to the latest version of the
database. When the SQL statement execution is done, mt_sql terminates the
read-only access immediately.

If you start a transaction or a read-only access explicitly using:
14 Matisse SQL Programmer’s Guide

SET TRANSACTION READ {WRITE | ONLY}

then mt_sql keeps the transaction or read-only access open until you commit
or abort the transaction, or end the read-only access. Note that you cannot
update both the schema and other database objects in the same transaction. The
following statements need to be executed in different transactions, since the
first statement is creating schema objects, i.e., classes, attributes, while the
following INSERT statement creates a regular object:

% mt_sql -d my_db@my_host

sql> SET TRANSACTION READ WRITE;

Transaction read write started 0

sql> CREATE CLASS movie (

2> title STRING,

3> rating STRING

4>);

Class "movie" created

sql> COMMIT;

Transaction commited

sql> SET TRANSACTION READ WRITE;

Transaction read write started 0

sql> INSERT INTO movie (title, rating)

2> VALUES ('Rocky', 'PG');

1 object inserted

sql> COMMIT;

Transaction commited

1.4 Command Line Options
The mt_sql utility can take several options. The -h option gives you a simple
explanation for all the options as listed in Table 1.1.

Usage: mt_sql [-d [user:]dbname[@host[:port]]] [-qopshV]

Table 1.1 Command Line Options

Option Explanation

-d, --database=... Specify the database and host in the format of dbname@host

-q, --quiet When you specify this option, no output is printed on your terminal. The sql>
prompt is not shown either.

-V, --version Print the version of the utility and exit.

-p, --passwd=... Specify the password to connect to the database.

-s, --size=... Display size for string types (default 20)

-h, --help Display this help and exit.
SQL Query Analyzer and mt_sql Utility 15

When you write a statement with BEGIN and END, such as a CREATE
METHOD statement, BEGIN and END must be the only word in a line. For
example:

sql> CREATE METHOD foo ()

> RETURNS INTEGER

> FOR class_foo

> BEGIN

> ...

> END;

1.5 Online Help
The utility has an online help that provides you with a simple description for
each SQL command, keyword, or built-in function.

To see a summary of available help commands, type “help”.

sql> help;

To see a description of each command, type “help <command>”. For example,

sql> help set transaction;

then you will see:

SyntaxSET TRANSACTION READ

{ONLY [<version>]

|WRITE [<priority>]}

Purpose:Start a version access (read-only transaction) or a
transaction.

...

1.6 Discovering the Schema
You can discover a database schema using SQL statements.

1. Getting the names of all the classes:
sql> SELECT MtName FROM MtClass;

MtName

movie

...
16 Matisse SQL Programmer’s Guide

2. Getting the names of the attributes defined in a class:
sql> SELECT MtAttributes.MtName FROM MtClass

2> WHERE MtName = 'movie';

MtName

title

rating

A quicker way to discover all the attribute names is to use a SELECT
statement that selects no object:

sql> SELECT * FROM movie WHERE 1 = 2;

title rating

-------------------- --------------------

0 objects selected

3. Getting the names of the relationships defined in a class:
sql> SELECT MtRelationships.MtName FROM MtClass

2> WHERE MtName = 'movie';

MtName

directedBy

starring
SQL Query Analyzer and mt_sql Utility 17

2 Constants and Identifiers

This section describes the different elements of a Matisse SQL command. The
elements that make up a request are separated by at least one separator. A
separator can be a blank space, a tab, or a carriage return.

After reading this section you should be familiar with:

Constants

Identifiers

Keywords

2.1 What Is a Constant?
A constant is a value of one of the following types:

Integer number

Numeric number

Real number

Boolean

Character string

Null value

Timestamp

Date

Time interval

Bytes

List of all the above types, except null and bytes.

Note that an undetermined value is expressed by the keyword NULL.

Integer
Constants

An integer constant is a string of 19 numerals at the most. It does not contain
spaces, and may be preceded by a plus + or a minus –. Maximum and minimum
values are 9223372036854775807 and -9223372036854775808, respectively.
Here is examples:

12

–123456879

Numeric
Constants

A numeric constants is a combination of integer number constants and a decimal
point ".", and may be preceeded by a plus + or a minus - sign. For example:
18 Matisse SQL Programmer’s Guide

12.34

 -.1

This type has a precision and scale. The scale is the number of digits in the
fractional part of the number, and cannot be negative or greater than the
precision.

Real Constants A real number constant, an approximate number, is a combination of integer
number constants and keywords “.” and “E” (or “e”). It can take the following
forms, where “x” represents an integer:

x

.x

x.

x.x

x.E[+–]x

.xE[+–]x

x.xE[+–]x

The following examples show real number constants that are valid:

12.
-.2
+143.5e-4

Boolean
Constants

You can declare boolean attributes in the Matisse database schema with the type
BOOLEAN. In Matisse SQL, boolean constants can take one of the two values:

TRUE

FALSE

For instance, to check if a boolean attribute MARRIED is set to TRUE you can
write the following predicate in a where-clause:

MARRIED = TRUE

Character String
Constants

A character string constant is a string of characters that does not include
carriage returns or non-printable characters, enclosed by single quotes. A
character string constant can be empty.

'this is a text string'

''

Matisse recognizes several escape sequences within strings that indicate
special characters. Each sequence begins with a backslash character ('\')
to signify a temporary escape from the usual rules for character
interpretation. \b is a backspace, \f is a form feed, \n is a newline, \r is a
carriage return, \t is a tab. Thus, to include a backslash in a string
constant, type two backslashes.
Constants and Identifiers 19

'another text.\r\n'

You can specify unicode character string constants for UTF16 using a ASCII
character or a escape sequence \uXXXX that represents a UTF16-LE (Little
Endian) character by specifying the N keyword as follows:

N 'a text with unicode sequences \u00E9\u00F1'

You can specify unicode character string constants for UTF8 by specifying the
UTF8 keyword as follows:

UTF8 'another unicode text'

You can specify a single quote in a character string constant, by specifying two
contiguous quotes. In the definition of a character string constant, two
contiguous quotes have a length of one character. The following example shows
how to enter a character string containing a single quote:

'Computer''s disks'

Note that the above character string has a length of 16.

Character strings are case sensitive.

Date and
Timestamp
Constants

A date constant is expressed with the following syntax:

DATE 'yyyy-mm-dd'

Where yyyy-mm-dd represents respectively the year with 4 digits, and the
month and day of the month with 2 digits.

For instance, if you want to check for the value of an attribute birthdate to
retrieve objects with a birth date later that October 10, 2007, you could write
the following predicate:

birthdate > DATE '2007-10-10'

To get the current date, use the following:

CURRENT_DATE()

A timestamp constant is expressed with the following syntax:

TIMESTAMP 'yyyy-mm-dd hh:mm:ss[.uuuuuu]'

[AT {LOCAL | GMT | UTC}]

To the date specification is added hh:mm:ss that represents respectively the
hour, minutes and seconds, each using 2 digits. An optional fraction of seconds
can be specified up to 6 digits.

For instance, if we suppose that we run an application where each operation
updates a lastEntry attribute, you could check for the objects where the last
entry was entered after October 1, 2007 at 11:30 AM with the following
predicate:

lastEntry >
20 Matisse SQL Programmer’s Guide

TIMESTAMP '2007-10-01 11:30:00'

The two following expressions are also valid and lead to the same result:

lastEntry >

TIMESTAMP '2007-10-01 11:30:00.00'

lastEntry >

TIMESTAMP '2007-10-01 11:30:00.000000'

By default the TIMESTAMP constant is interpreted by Matisse in the local time
for the client machine. You can also express the constant in Universal
Coordinated Time, also known as Greenwich Mean Time, by using the
keywords UTC or GMT.

For instance, if we suppose that the clock for your client machine is set in US
Pacific time, which is equivalent to GMT –9, the following constants would
actually yield the same internal value:

TIMESTAMP '2007-10-01 11:30:00'

TIMESTAMP '2007-10-01 11:30:00' AT LOCAL

TIMESTAMP '2007-10-01 20:30:00' AT GMT

TIMESTAMP '2007-10-01 20:30:00' AT UTC

For making your application portable across different time zones, it is strongly
recommended that you always store timestamp values in UTC, not in the local
time of your machine. Thus, if we suppose that the attribute lastEntry
contains the timestamp, 2007-10-01 20:30:00, in UTC, the following predicates
would evaluate to true:

lastEntry =

TIMESTAMP '2007-10-01 11:30:00' AT LOCAL

lastEntry =

TIMESTAMP '2007-10-01 20:30:00' AT UTC

To get the current timestamp, use the following:

CURRENT_TIMESTAMP()

This returns the timestamp value in UTC.

Time Interval
Constants

A time interval constant is expressed with the following syntax:

INTERVAL '[+|-]d hh:mm:ss[.uuuuuu]'

where d represents the days which can be up to 10 digits, and hh:mm:ss
respectively represents the hours, minutes, and seconds. An optional fraction of
seconds can be specified up to 6 digits.

For instance, if you want to retrieve athlete objects with marathon record less
than two hours and ten minutes, you could write a predicate like:

marathonRecord < INTERVAL '0 02:10:00.00'
Constants and Identifiers 21

Bytes Constants A bytes constant is a list of unsigned 8-bit integer numbers, where each number
is expressed by a pair of hexadecimal digits, has the following syntax:

X 'dd...'

where d represents a hexadecimal digit. Here are some examples:

X '000102A0FF'

X '' -- empty bytes

List Constants A list constant is a list of constant values whose types are either integer
number, numeric number, real number, boolean, character string, timestamp,
date, or time interval. A list constant is expressed with the following syntax:

LIST(type)([constant, ...])

For instance, a list constant with three integer numbers 1, 3, and 5 can be
written as follows:

LIST(INTEGER)(1, 3, 5)

A constant list with two dates can be expressed as follows:

LIST(DATE)(DATE '1997-03-10', DATE '1999-11-10')

A list of integers with no elements can be expressed as follows:

LIST(INTEGER)()

Note that all the elements in a constant list need to be of the same type, in
particular list elements cannot be NULL.

2.2 What Is an Identifier?
An identifier is a character string possibly enclosed by double quotes (" "). The
maximum length of an identifier is 255 characters. The other restrictions are as
follows:

If the identifier is not enclosed by double quotes:
It must start with a non-numeric character,
It cannot contain separators such as blanks, tabs, carriage returns.
The following characters are not allowed:
' ‘ " , . ? ! & ; + - * / % = | ^ ~ () < > [] { }

It cannot contain non-displayable characters.

If the identifier is enclosed by double quotes:
It cannot contain carriage returns
It cannot contain non-displayable characters
A double quote within the identifier is entered by two contiguous double
quotes ("").
22 Matisse SQL Programmer’s Guide

Matisse SQL is not case sensitive for the identifiers.

2.3 Matisse SQL Reserved Words
Table 2.1 lists the Matisse SQL reserved words that you can use to formulate an
SQL request. Matisse SQL keywords are not case sensitive.

Table 2.1 Matisse SQL Reserved Words

ADD DATE INTEGER REF

ALL DECIMAL INTERSECT REFERENCES

ALTER DECLARE INTERVAL RELATIONSHIP

AND DEFAULT INTO RENAME

ANY DELETE INVERSE RESIGNAL

AS DELETED IS RETURN

ASC DESC ITERATE RETURNS

AT DICTIONARY JOIN ROLLBACK

ATTRIBUTE DIVISION_BY_ZERO KEY SELECT

AUDIO DO LEAVE SELECTION

AVG DOUBLE LENGTH SELF

BEGIN DROP LIKE SENSITIVE

BETWEEN DUPLICATE LIMIT SET

BIGINT ELSE LIST SHORT

BLOB ELSEIF LOCAL SIGNAL

BOOLEAN END LONG SMALLINT

BY ENTRY_POINT LOOKUP STATIC

BYTE ENUM MAKE_ENTRY STRING

BYTES ESCAPE MESSAGE_TEXT SUBSCRIBE

CALL EVENT METHOD TABLE

CARDINALITY EXCEPT METHODS TIMESTAMP

CASE EXIT MTEXCEPTION TO

CAST FALSE NATURAL UNFILTERED

CHAR FILTERED N UNIQUE

CHARACTER FLOAT NOT UNKNOWN

CLASS FOR NOTIFY UNSUBSCRIBE
Constants and Identifiers 23

CLASS_ID FOREIGN NULL UPDATE

CLASS_NAME FROM NULL_OBJECT UPDATED

CLOB GMT NUMERIC UTC

COMMIT GROUP NVARCHAR UTF16

COMPARE HANDLER OF _UTF16

COMPILE HAVING OFF UTF32

COMPILED IF OFFSET UTF7

CONDITION IMAGE OID UTF8

CONNECTION IN ON _UTF8

CONSTRAINT INDEX ONLY VALUES

CONTINUE INHERIT OR VARCHAR

CREATE INNER ORDER VARYING

CURRENT INOUT OUT VERSION

CURRENT_DATE INSERT PRECISION VIDEO

CURRENT_TIMESTA
MP

INSERTED PRIMARY WAIT

INSTANCE READ WHERE

READONLY WORK

REAL WRITE

X

Table 2.1 Matisse SQL Reserved Words (Continued)
24 Matisse SQL Programmer’s Guide

3 Selecting Data

This section explains how to select data. After reading it you should know how
to:

Use the SELECT command

Name a result with the INTO keyword

Use predicates in the WHERE clause

Combine predicates with AND and OR

Use the NOT keyword to form a negative condition

Here is the syntax for SELECT statement in brief:

SELECT [PARALLEL(degree_of_parallelism)]
[FILTERED | UNFILTERED] [DISTINCT] expression, ...

FROM [ONLY] class, ...

| selection

| SELECTION(sel1 {UNION | INTERSECT | EXCEPT} sel2

[WHERE condition]

[GROUP BY attribute, ...]

[HAVING condition]

[ORDER BY attribute [ASC | DESC], ...]

[LIMIT max_number]

[OFFSET start_offset]

[INTO selection]

3.1 Using the SELECT Command
You query a Matisse database with the SELECT command. This command
returns the objects selected by the selection criteria, or column values specified
by the select-list.

This command, in its simplest form, is made up of the SELECT command and a
FROM clause. The Select-list part of the SELECT command has the following
syntax:

SELECT [FILTERED | UNFILTERED] [DISTINCT] {
 *

| [{class | alias}.][<navigation>.]{<attribute> |
<relationship> | *}

| OID
| <expression>

} [, ...]
Selecting Data 25

<navigation> ::=

<relationship>[.([CLASS | ONLY] <class>)]

[.<relationship>[.([CLASS | ONLY] <class>)] ...]

You must specify from where the data will be selected with a FROM clause. The
FROM clause has the following syntax:

FROM { [ONLY] class, ...

| selection

| SELECTION(sel1 {UNION | INTERSECT | EXCEPT} sel2

}

The following query selects all the objects of the class movie:

SELECT * FROM movie;

Using the ONLY
Keyword

You can also use the keyword ONLY to select objects of only the class specified
in the FROM clause, and not any of its subclasses. This is often referred to as the
own instances of the class, or also the direct objects of the class.

For instance, if we suppose that the class artist has a subclass
movieDirectors the following query would select only the objects which are
of class artist but not movieDirector or any other subclass of artist:

SELECT * FROM ONLY artist;

Specifying a
SQL Projection

Matisse queries always return a SQL projection. The Matisse C API and
language bindings allow you to access the result set and retrieve the values for
the columns defined in the Select-list.

The Select-list is a comma separated list of columns which can contain either
the symbol *, attributes, relationship, or column expressions.

An attribute specification consists of a Matisse attribute name that may be fully
qualified with an alias or a class name.

The following statements would return a result set structured into the two
columns firstName and lastName, also referenceable as column 1 and
column 2:

SELECT firstName, lastName FROM artist;

SELECT artist.firstName, artist.lastName FROM artist;

SELECT a.firstName, a.lastName FROM artist a;

A column expression specification can be an arithmetic expression or a SQL
function including string function, list function, or set function (also called an
aggregate function). In the case of a set function, there should be no other
column defined in the Select-list. The following statements illustrate the
different kinds of column expressions:

SELECT title, runningTime/10 FROM movie;
26 Matisse SQL Programmer’s Guide

SELECT m.title, LENGTH(m.directedBy.lastName) FROM movie m;

SELECT AVG(runningTime) FROM movie;

List Types in
SQL Projection

If an attribute in the Select-list is of list type and the query result is accessed
through the Matisse SQL Projection API, then the elements in the list are
“exploded” in a similar way a relational join would do. For instance, a box
office record with top five receipt numbers would display a result as follows:

SELECT week, topReceipts

FROM boxOffice

WHERE week = DATE '2001-01-22';

week topReceipts

------------ -----------

2001-01-22 16

2001-01-22 11.3

2001-01-22 8.2

2001-01-22 7.6

2001-01-22 7

Aliases in SQL
Projection

You can also associate a column alias to a projection column, as shown on the
following example:

SELECT

AVG(runningTime) AS “avg running time”

FROM

movie;

The column aliases are used in the HAVING clause to filter out rows from the
result set.

The keyword AS is optional and may be omitted.

OID, and
Relationship in
SQL Projection

The 'SELECT *' projection includes the attributes, the OID column, and the
relationships defined in the class.

For example, the class movie has an attribute title and a relationship
starring to artist class, class artist has an attribute name.

SELECT * FROM movie;

OID title starring

------------- --------------- -------------

0x4ff The Green Mile 0x6e4

0x501 Titanic 0x688

...
Selecting Data 27

The OID and relationship columns are of type string and represented by the
hexadecimal OID number. Note that the relationship column returns only the
first successor object of the relationship for each object, even if the relationship
has more than one successor object. This is for the purpose of simplicity.

To get all the starring artists, you may use the following statement.

SELECT m.title, a.name AS "Starring Artists"

FROM movie m JOIN artist a ON m.starring = a.OID;

title Starring Artists

-------------- ---------------------

The Green Mile Tom Hanks

Titanic Leonardo DiCaprio

Titanic Kate Winslet

See the next section 3.2, Join Operation for greater details on join operations.

A simpler version of the above statement would use a navigational query:

SELECT m.title, m.starring.name AS "Starring Artists"
FROM movie m;

See the 7.4, Navigational Queriessection for more details on navigation queries.

REF() in SQL
Projection

The REF() built-in can be used in SQL projection to directly access objects
from a SQL statement. Unlike OID which returns the Object Identifier as a
String, REF() returns objects and exports them as the C API type MtOid. The
REF() built-in is heavily used for passing objects from SQL to the object-
oriented language bindings. The following table compares OID and REF().

For example to retrieve all the Movie objects released in 2008:

SELECT REF(movie)

FROM movie

WHERE releaseYear = 2008;

Table 3.1 Comparison of OID and REF()

OID REF()

C API type MtString MtOid

Matisse type MT_STRING MT_OID

Primary key yes no

Language binding type String MtObject
28 Matisse SQL Programmer’s Guide

For example to retrieve all the Actor objects who star in movies released in
2008:

SELECT REF(m.starring)

FROM movie m

WHERE m.releaseYear = 2008;

SQL Methods in
SQL Projection

The Select-list can include SQL methods.

For example, to list the Directors of the movies released in 1997 assuming the
GetDirectorName() SQL method is defined on the class movie:

SELECT m.Title, m.GetDirectorName() AS Director

FROM movie m;

WHERE m.releaseYear = 1997;

Title Director

------------------- -------------

The Horse Whisperer Robert Redford

Titanic James Cameron

...

The SQL statement below uses both the instance methods
GetAccrualsName() and GetAccrualsQuantity() defined on the
Employee class and the static method ListBankName() defined on the Bank
class to list the negative accruals for the Legal department employees:

SELECT

d.DepartmentName,

d.employees.EmpId,

d.employees.LastName,

d.employees.GetAccrualsName(Bank::ListBankName(FALSE))
AS "Bank Name",

d.employees.GetAccrualsQuantity(Bank::ListBankName(FALSE
)) AS Total

FROM

Department d

WHERE

d.DepartmentName = 'Legal'

HAVING

Total < 0

ORDER BY

d.DepartmentName,

d.employees.LastName;
Selecting Data 29

Get a Successor
at a Position in a
Relationship

You can get a successor object at a specific position in a relationship. For
instance, the following SELECT statement returns movie titles with the first
starring artist of each movie:

SELECT
m.Name,
m.Starring(1).FirstName,
m.Starring(1).LastName,

FROM

movie m;

The syntax to access a successor object at a position in a relationship is

relationship_name(position)

The first successor object in a relationship is at position 1.

The expression can be used also in WHERE clause. For example, the following
query statement returns movies whose first starring’s last name is Brody:

SELECT

m.Name

FROM

movie m

WHERE

m.Starring(1).LastName = ‘Brody’;

Pseudo
Attributes

Matisse SQL provides other pseudo attributes besides MtOid, MtClassName
and MtClassOid and MtFullClassName defined on the MtObject class as well as
MtFullName defined on MtClass, MtIndex, MtEntryPointDictionary,
MtAttribute and MtRelationship classes.

MtClassName returns the class name of an object as string. For example,

SELECT LastName, MtClassName AS Profession
FROM Artist;

LastName Profession

------------------- -------------------

Hanks Artist

Foster Artist

Spielberg MovieDirector

MtClassName can be used also in WHERE clause. For example, the next
statement returns all the objects whose class name includes ‘Corporate’:

SELECT *

FROM Customer c

WHERE
c.MtClassName LIKE '%Corporate%';
30 Matisse SQL Programmer’s Guide

NOTE: Use the IS OF predicate instead of a simple comparison of class
name like:
SELECT *

FROM Customer c

WHERE c.MtClassName = 'CorporateCustomer';
The following predicate executes faster:
... WHERE c IS OF (ONLY CorporateCustomer);

For more information about the IS OF predicate, refer
to section 3.8, Specifying a Type Predicate with IS OF.

MtClassOid returns the class of an object in hexadecimal OID format. For
example,

SELECT LastName, MtClassOid FROM Artist;

LastName MtClassOid

------------------- -------------------

Hanks 0x25f0

Foster 0x25f0

Spielberg 0x260c

The type of MtClassOid is String.

MtFullClassName returns the full qualified class name of an object as string.
For example,

SELECT LastName, MtFullClassName
FROM Artist;

LastName MtFullClassName

------------------- -------------------

Hanks examples.media.Artist

Foster examples.media.Artist

Spielberg examples.media.MovieDirector

MtFullName returns the full qualified class name of a schema object as string.
For example,

SELECT MtName, MtFullName FROM MtClass;

MtName __ MtFullName

------------------- -------------------

Artist examples.media.Artist

Movie examples.media.Movie

MovieDirector examples.media.MovieDirector

Pseudo
Relationships

Matisse SQL provides several pseudo relationships MtAllAttributes,
MtAllRelationships, MtAllInverseRelationships,
MtAllSuperclasses, MtAllSubclasses, MtAllMethods defined on
MtClass to simplify the description class objects with inheritance. Each pseudo
Selecting Data 31

relationship navigates through the class hierarchy to the result produced in each
individual level of the hierarchy. The MtAllSubnamespaces pseudo
relationship defined on MtNamespace class which returns the combination of
the MtNamespaces relationship value produced at in each individual level of
the namespace path.

MtAllAttributes returns the combination of the MtAttributes relationship
value produced at in each individual level of the class hierarchy. For example,

SELECT MtName,MtAttributes.MtName,MtAllAttributes.MtName
FROM MtClass WHERE MtName = 'Manager';

MtName MtName MtName

-------------------- -------------------- ----------------

Manager Expertise EmpId

Manager NULL LastName

Manager NULL Expertise

MtAllRelationships returns the combination of the MtRelationships
relationship value produced at in each individual level of the class hierarchy.
For example,

SELECT MtName,MtRelationships.MtName,
MtAllRelationships.MtName FROM MtClass WHERE MtName =
'Manager';

MtName MtName MtName

-------------------- -------------------- ----------------

Manager DirectReports Address

Manager ManageProjects Accruals

Manager NULL Department

Manager NULL DirectReports

Manager NULL ManageProjects

MtAllSuperclasses returns the combination of the MtSuperclasses
relationship value produced at in each individual level of the class hierarchy.
For example,

SELECT MtName,MtSuperclasses.MtName,
MtAllSuperclasses.MtName FROM MtClass WHERE MtName =
'Officer';

MtName MtName MtName

-------------------- -------------------- ----------------

Officer Manager Manager

Officer NULL Employee

Officer NULL MtObject

MtAllMethods returns the combination of the MtMethods relationship value
produced at in each individual level of the class hierarchy. For example,

SELECT MtName,MtMethods.MtName,MtAllMethods.MtName FROM
MtClass WHERE MtName = 'Manager';

MtName MtName MtName
32 Matisse SQL Programmer’s Guide

-------------------- -------------------- ----------------

Manager TotalSales TotalSales

Manager NULL FullName

Manager NULL Expertises

3.2 Join Operation
Matisse SQL provides equi-joins among classes using OID as the primary key
and relationships as foreign keys. For example, the following statement selects
the names of movies along with their director names:

SELECT

m.name, d.lastName, d.firstName

FROM

movie m,

movieDirector d

WHERE

m.directedBy = d.OID;

The join condition is expressed using the relationship directedBy defined
between the two classes. The relationship directedBy works as the foreign key
and OID works as the primary key. Here are two more examples using a SQL
join.

The following statement selects all the movies that have ever passed the $1
million box office record, along with the director's name and box office records.

SELECT

m.name, d.lastName, bx.totalReceipts

FROM

movie m,

movieDirector d,

boxOffice bx

WHERE

m.directedBy = d.OID AND

m.boxOfficeRecords = bx.OID AND

bx.totalReceipts >1000000;

You can also join within the same class. Suppose we have the class person
with a relationship spouse. The following statement selects person names
with spouse's name.

SELECT

p.name, sp.name

FROM

person p,

person sp
Selecting Data 33

WHERE

p.spouse = sp.OID;

Natural Join If no join condition is provided in the WHERE clause, Matisse SQL tries to find
an appropriate one. Since only relationships can work as foreign keys, if there is
only one relationship defined between the classes in the FROM clause, Matisse
SQL uses the relationship for the JOIN condition.

For example, the boxOfficeRecords relationship is the only one between the
movie class and boxOffice class. The following two statements are
equivalent:

SELECT * FROM movie m, boxOffice bx;

SELECT *

FROM movie m, boxOffice bx

WHERE m.boxOfficeRecords = bx.OID;

The following syntax works if there is one and only one relationship between
the movie and boxOffice classes, otherwise it returns an error:

SELECT * FROM movie NATURAL JOIN boxoffice WHERE ...;

The following statement raises an error since there are two relationships
directedBy and starring defined between the movie class and
movieDirector class. Note that Matisse SQL takes account of inheritance.

SELECT * FROM movie m, movieDirector d; -- error!

Conditional Join The following illustrates the syntax for a conditional join:

SELECT *

FROM

movie m JOIN boxOffice bx

ON m.boxOfficeRecords = bx.oid

WHERE ...;

The ON clause can reference only the joined classes. INNER JOIN may be
specified in place of JOIN; the results are the same in either case.

For a three-way conditional join, the syntax is:

SELECT *

FROM

Movie mv JOIN MovieDirector dr

ON mv.directedBy = dr.oid

JOIN boxOffice bx ON mv.boxOfficeRecords = bx.oid

WHERE

dr.lastName = 'Spilberg'

AND bx.totalReciepts > 10000000;
34 Matisse SQL Programmer’s Guide

You may use parentheses:

SELECT *

FROM

(Movie mv JOIN MovieDirector dr ON mv.directedBy = dr.oid)

JOIN boxOffice bx ON mv.boxOfficeRecords = bx.oid

WHERE

dr.lastName = 'Spilberg'

AND bx.totalReciepts > 10000000;

Sorting the
Result

Within a query statement with join operation, you can use as the criteria of
sorting (see section 3.12, Specifying Sort Criteria with ORDER BY) attributes of
the classes specified in the FROM clause.

3.3 Using SQL Selections
SQL Selections offer a convenient way to manage a list of objects that are
selected from an SQL statement.

Create an SQL
Selection

You can create a selection of objects with the keyword INTO. The keyword
INTO must be followed with a character string that specifies the name of the
new selection result. A SELECT INTO statement uses the following syntax:

SELECT REF(alias)

FROM classname alias

WHERE ...

INTO selection

This selection contains a list of the objects that met the specified criteria. The
name for selection must be different from that of any of the classes that are
accessible in the current context. The following command, for example, selects
the objects of the class movie and stores them in a new selection called
mvAction:

SELECT REF(m) FROM movie m INTO mvAction;

Note that no projection is printed in the Enterprise Manager or in the mt_sql
utility when a SELECT statement has an INTO clause to generate a selection.

Select from SQL
Selections

After executing the above command, you can select the objects from the
mvAction selection, as shown below:

SELECT * FROM mvAction;

The name for selection can be the same as any selection previously used in the
current transaction and still accessible, in which case the selection will be
overwritten with a new list of objects.
Selecting Data 35

For example, you can narrow down the mvAction selection with a WHERE
clause, as shown below:

SELECT REF(m) FROM mvAction m WHERE ... INTO mvAction;

You can execute a SELECT statement from the result of a set operation on
selections like UNION, INTERSECT, or EXCEPT. For example, you create two
selections for Movie objects:

SELECT REF(m) FROM Movie m WHERE ... INTO movies1;

SELECT REF(m) FROM Movie m WHERE ... INTO movies2;

then, you can select movies from the above two selections with additional
criteria using the SELECTION syntax. For example,

SELECT m.Title,
FROM SELECTION(movies1 UNION movies2) m
WHERE m.Name LIKE ‘M%’;

For the intersection of two selections, use INTERSECT:

... FROM SELECTION(movies1 INTERSECT movies2)

For the difference of two selections, use EXCEPT:

... FROM SELECTION(movies1 EXCEPT movies2)

A nested set operation on selections is allowed. For instance,

... FROM SELECTION(SELECTION(movies1 INTERSECT movies2)

INTERSECT movies3)

Selection Class When the classes of selections are identical, like the above examples using
movies, it is obvious from which class you are selecting objects. However,
when the classes of selections are different, you need to specify the class from
which you are selecting.

For example, suppose you have three classes Employee, HourlyEmployee, and
SalariedEmployee, where the last two classes are inheriting from class
Employee. You created two selections hourly and salaried from
HourlyEmployee and SalariedEmployee, respectively. Then, you select
from the union of the two selections:

SELECT FirstName, LastName
FROM SELECTION(hourly UNION salaried) AS Employee
WHERE ...

If you do not specify the class alias, you cannot access the properties defined in
class Employee. If you specify more specialized class then the common super
classes, you will get an error.
36 Matisse SQL Programmer’s Guide

Delete a
Selection

SQL Selections created with the INTO keyword as shown in the this section
must be deleted using a DROP SELECTION statement when they are no longer
needed.

The syntax for DROP SELECTION is as follows:

DROP SELECTION selection

For instance, an application may run the following queries:

SELECT REF(m) FROM movie m INTO mvAction;

... [other queries using the selection] ...

DROP SELECTION mvAction;

3.4 Specifying a Search Criteria with WHERE
A search criterion can be defined in the WHERE clause as a combination of
predicates. During execution the predicates are evaluated on the objects
specified in the FROM clause. Each predicate evaluates to one of the following
three values:

TRUE

FALSE

UNKNOWN

Each object for which the combination of the predicates evaluated TRUE is
added to the selection result. Objects for which the evaluation returned FALSE
or UNKNOWN are not added to the selection result.

The following example shows how to select objects of the class movie with a
running time longer or equal 90 minutes:

SELECT REF(m)

FROM movie m
WHERE (runningTime >= 90)
INTO mvAction;

Note that the predicate (runningTime >= 90) compares the value of the
numeric attribute runningTime to the constant 90. Only those objects of class
movie that qualify for this predicate will be added in the selection result
mvAction.

In the SELECT request shown above, it is obvious that the objects for which the
comparison is FALSE are those whose runningTime is less than 90 minutes.
The objects for which the comparison is UNKNOWN are those for which the
runningTime is a null value or is not a numeric type.
Selecting Data 37

3.5 Using Attributes in Expressions
You can specify attribute expressions either in the Select-list to define an SQL
projection, or as part of an evaluation predicate in the WHERE clause.

A predicate where one value is compared to another has the following syntax:

expression1 comparison_operator expression2

A predicate expression can contain any of the attributes of the class specified in
the FROM clause. The set of possible types associated with the attribute is the set
of types associated with the descriptor for the attribute in the database schema.

Specifying an
Attribute in a
WHERE Clause

When you specify an attribute expression in the WHERE clause, you can specify
the attribute by itself or preceded by a class name or an alias. In any case, the
attribute that you specify must belong to the class specified in the FROM clause.

Here is the syntax for specifying an attribute:

[(class | alias).] attribute

In the example below we specify the attribute runningTime without a class or
an alias qualifier:

SELECT *
FROM movie
WHERE runningTime = 90;

In the example below we specify two attributes preceded by the class name
qualifier:

SELECT *
FROM movie
WHERE

movie.title LIKE 'Rocky%'
AND movie.runningTime > 90;

The same query using an alias qualifier instead of the class name is shown
below:

SELECT *
FROM movie AS m
WHERE

m.title LIKE 'Rocky%'
AND m.runningTime > 90;

3.6 Combining Predicates with AND and OR
You can combine two or more predicates with the AND and OR logical operators.
Predicates linked together by these logical operators have the following syntax:

predicate1 logical_operator predicate2
38 Matisse SQL Programmer’s Guide

When connected by an AND operator, both predicates must evaluate to true for
the AND to evaluate to true. When connected by an OR operator, only one of the
predicates needs to evaluate to true for the OR to evaluate to true.

The following example might help illustrate compound predicates. If you want
to select movies that have a running time greater than 90 minutes and a title
starting with ‘Rocky’.

A request like this would have the following syntax:

SELECT *
FROM movie
WHERE

runningTime > 90

AND title LIKE 'Rocky%';

The result of the evaluation of the conjunctions (AND) and unions (OR) of
predicates are defined on truth tables. Table 3.2 is the truth table for the AND
operator.

Table 3.3 is the truth table for the OR operator.

Precedence of
Evaluation of
AND and OR

The subpredicates expressed within parentheses are evaluated in priority. For
operations at the same level, AND operators are applied before OR operators.

When a predicate does not have parentheses, a predicate is then interpreted from
left to right. The predicate

A AND B AND C

for example, is equivalent to the following predicate:

(A AND B) AND C

Table 3.2 AND Operator Truth Table

Predicate 1 Predicate 2 Result

True True True

True False False

False True/False False

Unknown True/False/Unknown Unknown

Table 3.3 OR Operator Truth Table

Predicate 1 Predicate 2 Result

True True/False/Unknown True

False False False

Unknown False/Unknown Unknown
Selecting Data 39

Matisse SQL implements the classic laws of commutativity and distributivity
for the AND and OR operators, as shown in Table 3.4.

A SELECT statement that selects objects of the class movie where the
runningTime is greater than 120 minutes or less than 90 minutes and whose
title starts with ‘Rocky’ would look like:

SELECT *
FROM movie
WHERE

title LIKE 'Rocky%'
AND (runningtime < 90 OR runningTime > 120);

Note that in accordance with the law of distributivity described above, the
following request is equivalent:

SELECT *
FROM movie
WHERE

(title LIKE 'Rocky%' AND runningTime < 90)

OR

(title LIKE 'Rocky%' AND runningTime > 120);

3.7 Specifying a Negative Condition with NOT
You can use the NOT keyword to evaluate the opposite or negation of a
predicate.

For example, to select objects of the class movie that do not have a title starting
with ‘Rocky’, you could write the following statement:

SELECT *
FROM movie
WHERE

NOT title LIKE 'Rocky%';

A SELECT statement that selects objects of the class movie where the
runningTime is greater than 120 minutes or less than 90 minutes and whose
title starts with ‘Rocky’ would look like:

Table 3.4 Equivalent Logical Expressions

Expression Equivalent Expression

A AND B B AND A

A OR B B OR A

A AND (B OR C) (A AND B) OR (A AND C)

A OR (B AND C) (A OR B) AND (A OR C)
40 Matisse SQL Programmer’s Guide

SELECT *
FROM movie
WHERE

title LIKE 'Rocky%'
AND NOT runningtime BETWEEN 90 AND 120;

3.8 Specifying a Type Predicate with IS OF
A type predicate tests object instances based on their classes. The syntax is as
follows:

expression IS [NOT] OF ([ONLY] classname [, ...])

where expression, representing an object, is a class name or alias name
specified in the FROM clause, or relationship navigations. The result of the
predicate is true if
i) the actual class of an object, expression, is classname or one of the
subclasses of classname, or
ii) the actual class of an object is classname if the optional ONLY precedes
classname,

for at least one of the classes specified by classname.

If expression is NULL, the result of the predicate is unknown.

For example, the next SELECT statement selects employees using different
conditions for different type of employee:

SELECT *
FROM Employee e

WHERE
(e IS OF (ONLY Employee) AND salary > 40000)

OR
(e IS OF (Manager, Officer) AND salary > 50000);

When expression contains relationship navigations, the predicate executes the
type test for each successor object of the relationship. If at least one of the
successor object satisfies the type test, the result of the predicate is true.

For example, the following statement selects movies which has any starring
movie director:

SELECT *
FROM Movie m

WHERE
m.starring IS OF (MovieDirector);

Note that if the relationship starring has no successor object, the type
predicate evaluates to unknown since m.starring is NULL.
Selecting Data 41

3.9 Specifying UNFILTERED
The UNFILTERED query hint forces a direct SELECT statement to build the full
SQL projection on the server-side the same way a block statement or a SQL
Method would do it, thus eliminating the need for returning objects to the client
workspace.

SELECT UNFILTERED

 d.DepartmentName,

 d.employees.EmpId,

 d.employees.Salary

FROM

 Department d

ORDER BY

 d.DepartmentName;

The SQL statement above is equivalent to the same SELECT statement
executed in a block statement:

BEGIN

SELECT

d.DepartmentName,

d.employees.EmpId,

d.employees.Salary

FROM

Department d

ORDER BY

d.DepartmentName;

END;

3.10 Navigation Filtering with FILTERED
The SELECT FILTERED statement applies the relationship navigation filters in
the WHERE clause to the relationship navigation in the Select-list. The SQL
projection produced is equivalent to the SQL projection of a SQL relational
equi-join.

The SELECT statements below shows the effect of FILTERED on the SQL
projection result. The first statement without FILTERED returns only the
Department matching all the conditions expressed in the WHERE clause and in
these departments all the employees are returned.

SELECT

d.DepartmentName,

d.employees.EmpId,

d.employees.Salary

FROM
42 Matisse SQL Programmer’s Guide

Department d

WHERE

d.employees.Salary = 180000;

DepartmentName EmpId Salary

--------------- ------------- -----------------

Finance 48 135000

Finance 47 145000

Finance 46 160000

Finance 45 145000

Finance 3 180000

Finance 2 200000

Finance 1 249000

Finance 440 90000

Finance 439 45000

...

The second statement, which includes FILTERED, returns only the rows
matching all the conditions expressed in the WHERE clause that is only 2 rows:

SELECT FILTERED

 d.DepartmentName,

 d.employees.EmpId,

 d.employees.Salary

FROM

 Department d

WHERE

 d.employees.Salary = 180000;

DepartmentName EmpId Salary

--------------- ------------- -----------------

Finance 3 180000

Finance 19 180000

The result of the SELECT FILTERED statement is equivalent to the result of a
SELECT statement with a HAVING clause that includes the navigation predicates
defined in the WHERE clause of the SELECT FILTERED.

SELECT

d.DepartmentName,

d.employees.EmpId,

d.employees.Salary

FROM

Department d

HAVING

Salary = 180000;

DepartmentName EmpId Salary

--------------- ------------- -----------------

Finance 3 180000
Selecting Data 43

Finance 19 180000

Matching
Predicates

The combination of navigation predicates expressed in the WHERE clause are
applied to the best matching columns in the Select-list. For example the
following statement that combines AND and NOT predicates, lists all the
Manager expert in Design and Full Time employee, working on a project
with project members not being Contractor:

SELECT FILTERED

 d.DepartmentName,

 d.employees.Manager.EmpId,

 d.employees.Manager.ManageProjects.ProjectID,

 d.employees.Manager.ManageProjects.Members.EmpId

FROM

 Department d

WHERE

 'Design' IN d.employees.Manager.Expertise

 AND d.employees.Manager.Contract = 'Full Time'

 AND NOT
d.employees.Manager.ManageProjects.Members.Contract =
'Contractor'

ORDER BY

 d.DepartmentName,

 d.employees.Manager.EmpId;

First note that in the Select-list the employees relationship includes the
Manager class filter. The first 2 predicates match with the second column and
the last predicate matches with the last column.

Matching
Predicates with
Composition

The navigation predicates ending with a Composition (“Part of”) relationship
are applied to the column that matches the navigation path parent of the
Composition relationship. For instance, the statement below lists all the
Manager expert in Design and living in Sevilla, working on a project with
project members living in Charleroi or Stuttgart or Strasbourg:

SELECT FILTERED

 d.DepartmentName,

 d.employees.Manager.EmpId,

 d.employees.Manager.ManageProjects.ProjectID,

 d.employees.Manager.ManageProjects.Members.EmpId

FROM

 Department d

WHERE

 'Design' IN d.employees.Manager.Expertise

 AND d.employees.Manager.Address.City = 'Sevilla'
44 Matisse SQL Programmer’s Guide

 AND
d.employees.Manager.ManageProjects.Members.Address.City IN
('Charleroi', 'Stuttgart', 'Strasbourg')

ORDER BY

 d.DepartmentName,

 d.employees.Manager.EmpId;

The first 2 predicates match with the second column and the last predicate
matches with the last column.

Unmatching
Predicates

When navigation predicates are deeper than the column navigation paths, they
are applied to the deepest matching column of the Select-list. The next
statement is similar to the one defined in the section above, except that it lists
only the Employee Identifier for all the Manager expert in Design living in
Sevilla, working on a project with project members living in Charleroi or
Stuttgart or Strasbourg:

SELECT FILTERED

 d.DepartmentName,

 d.employees.Manager.EmpId

FROM

 Department d

WHERE

 'Design' IN d.employees.Manager.Expertise

 AND d.employees.Manager.Address.City = 'Sevilla'

 AND
d.employees.Manager.ManageProjects.Members.Address.City IN
('Charleroi', 'Stuttgart', 'Strasbourg')

ORDER BY

 d.DepartmentName,

 d.employees.Manager.EmpId;

In this statement, all the predicates match with the second column.

Filtering and
Reordering
Relationship
with REF()

The REF() built-in can be used in a SQL projection to directly access objects
from a SQL statement. REF() combined with FILTERED and ORDER BY makes
a powerful mean to filter and to reorder relationships. The following SQL
statement retrieves all the Employees in each department an reorder the
Employee objects by salary in descending order:

SELECT FILTERED

REF(d),

REF(d.Employees)

FROM

Department d

ORDER BY

d.DepartmentName,

d.Employees.Salary DESC;
Selecting Data 45

The next statement filters the Employee objects based on their class. It retrieves
all the Managers (excluding subclasses) from the Finance department and
reorder the objects by employee identifier:

SELECT FILTERED

REF(d),

REF(d.Employees.(ONLY Manager))

FROM

Department d

WHERE

d.DepartmentName = 'Finance';

ORDER BY

d.DepartmentName,

d.Employees.EmpId;

The last example filters the Employee objects based on some property values. It
retrieves all the Managers and their Direct Reports who are Contractor and
expert in Design and reorder the Direct Reports Employee objects by their
Last Name:

SELECT FILTERED

 REF(m),

 REF(m.DirectReports.Employee)

FROM

 Manager m

WHERE

 m.DirectReports.Contract = 'Contractor'

 AND 'Design' IN m.DirectReports.Expertise

ORDER BY

 m.EmpId,

 m.DirectReports.LastName;

Relationship
COUNT

The WHERE clause navigation predicates do not apply to the Relationship Count
built-in (COUNT). For example, the statement below counts the number of
employees in each department where there is at least one Executive and not the
number of Executive:

SELECT FILTERED

 d.DepartmentName,

 count(d.employees) AS "Exec Count"

FROM

 Department d

WHERE

 d.employees IS OF (ONLY Officer,Executive)

ORDER BY

 d.DepartmentName;
46 Matisse SQL Programmer’s Guide

The Relationship Count built-in (COUNT) supports only explicit class filtering.
The following statement returns the Executive head count in each department:

SELECT FILTERED

d.DepartmentName,

COUNT(d.employees.Officer) +

COUNT(d.employees.Executive) AS "Exec Count"

FROM

Department d

ORDER BY

d.DepartmentName;

The Object Count built-in (COUNT) does support navigation filtering. The next
statement also returns the number of Executives in each department where there
is at least one Executive:

SELECT FILTERED

 d.DepartmentName,

 count(d.employees.*) AS "Exec Count"

FROM

 Department d

WHERE

 d.employees IS OF (ONLY Officer,Executive)

GROUP BY

 d.DepartmentName

ORDER BY

 d.DepartmentName;

3.11 Getting DISTINCT Values
When you want to get only one copy for each set of duplicate rows, use the
DISTINCT keyword in the select-list. For example, the following statement lists
all the kinds of ratings for each category:

SELECT DISTINCT category, rating FROM movie;

In the current release, DISTINCT * applies only to the properties defined in the
ORDER BY clause and allows you to select only scalar values excluding list
types and multimedia types. Note that retrieving the DISTINCT values in a list
type attribute can easily be done with a SQL Method. The following DISTINCT
* statement requires to specify each DISTINCT property in the ORDER BY
clause.

SELECT DISTINCT * FROM movie ORDER BY category, rating;

To retrieve distinct values in navigational queries, you need to specify the
navigation path for each DISTINCT property in the ORDER BY clause as follows:

SELECT DISTINCT
Selecting Data 47

d.DepartmentName,

CONCAT('"',CONCAT(d.employees.Contract, '"')) AS

Contract,

CAST((d.employees.Salary / 12) AS INT) AS Monthly

FROM

Department d

ORDER BY

d.DepartmentName,

d.employees.Contract,

d.employees.Salary DESC;

3.12 Specifying Sort Criteria with ORDER BY
You can use an ORDER BY clause to sort the objects according to the values of
some of the attributes. You can specify the order to be ascending or descending
for each attribute in the ORDER BY clause. By default, the order is ascending.

The syntax is as follows:

ORDER BY criteria

Where criteria is a list of comma-separated criteria with each criterion
having the following syntax:

{ [{class | alias }.][navigation.]attribute [ASC | DESC] }

With navigation such as:

navigation ::=

relationship[.({CLASS | ONLY} successor_class)]

[.relationship[.({CLASS | ONLY} successor_class)] ...]

Note that criteria attribute cannot be of list types nor multimedia types, e.g.,
LIST(INTEGER), IMAGE, or VIDEO.

For instance, to select the movies by title ascending and runningTime
descending, with a running time higher than 90 minutes, you would write the
following statement:

SELECT *
FROM movie
WHERE runningTime > 90

ORDER BY title ASC, runningTime DESC;

Note that the ascending or descending specification is “sticky,” it propagates to
the next criteria unless otherwise specified. For instance the following statement
will sort the objects on both title and runningTime descending, as the DESC
propagates to the right.
48 Matisse SQL Programmer’s Guide

SELECT *
FROM movie
ORDER BY title DESC, runningTime;

To sort the objects on runningTime ascending, you need to specify it
explicitly:

SELECT *
FROM movie
ORDER BY title DESC, runningTime ASC;

To sort the objects in navigational queries, you need to specify the navigation
path in the ORDER BY clause as follows:

SELECT m.title, m.starring.lastName AS Starring

FROM movie m

ORDER BY m.title, m.starring.lastName DESC;

Note that within a query statement containing a JOIN operation, you may use
attributes of the classes specified in the FROM clause as sort criteria (that is, as
arguments to the ORDER BY clause).

3.13 Filtering with HAVING
The HAVING clause is a mean to filter out rows from a projection of a
navigational query. All predicates in the HAVING clause must use aliases from
the Select-list.

For instance, the following statement filter out the rows in the result set that
does not match the HAVING predicates:

SELECT

 d.DepartmentName,

 d.employees.EmpId,

 d.employees.Salary AS Salary

FROM

 Department d

HAVING

 Salary = 180000

ORDER BY

 d.DepartmentName;

DepartmentName EmpId Salary

--------------- ------------- -----------------

Finance 3 180000

Finance 19 180000

The SELECT / HAVING statement above is equivalent to a SELECT FILTERED
with a WHERE clause statement which filters on the employee's salary:
Selecting Data 49

SELECT FILTERED

 d.DepartmentName,

 d.employees.EmpId,

 d.employees.Salary AS Salary

FROM

 Department d

WHERE

 d.employees.Salary = 180000

ORDER BY

 d.DepartmentName;

DepartmentName EmpId Salary

--------------- ------------- -----------------

Finance 3 180000

Finance 19 180000

Filtering List
Type Values

The HAVING clause is the only mean to filter out rows from object properties,
variables or SQL methods returning a LIST of values. For instance, to select the
Directors expert in'Organization' and showing only this expertise, you
would write the following statement:

SELECT FILTERED

 d.DepartmentName,

 d.employees.Director.EmpId,

 d.employees.Director.LastName,

 d.employees.Director.Expertise AS Expertise

FROM

 Department d

WHERE

 d.DepartmentName = 'Engineering'

 AND 'Organization' IN d.employees.Director.Expertise

HAVING

 Expertise = 'Organization'

ORDER BY

 d.DepartmentName,

 d.employees.Director.EmpId;

To select the Directors expert in 'Organization' or 'Management' resulting
from the execution of a SQL Method and showing only these skills, you would
write the following statement:

SELECT

 d.DepartmentName,

 d.employees.Director.EmpId,

 d.employees.Director.LastName,

 d.employees.Director.getRankedExpertises(7) AS Skills
50 Matisse SQL Programmer’s Guide

FROM

 Department d

WHERE

 d.DepartmentName = 'Engineering'

HAVING

 Skills = 'Development' OR Skills = 'Management'

ORDER BY

 d.DepartmentName,

 d.employees.EmpId;

Aggregate
Values from
SQL Methods

Aggregate values could also result from the execution of SQL methods. A SQL
methods are a convenient and powerful way to compute application-specific
aggregate values. For instance, the following SQL statement uses the
GetDirectReportsTotalSalaries() method to calculate the total budget of
a manager:

SELECT FILTERED

d.DepartmentName,

d.employees.Manager.Class_Name AS Position,

d.employees.Manager.EmpId,

d.employees.Manager.LastName,

COUNT(d.employees.Manager.DirectReports) AS "Head Count",

d.employees.Manager.GetDirectReportsTotalSalaries() AS

Budget

FROM

Department d

WHERE

d.DepartmentName = 'Legal'

HAVING

(Budget / "Head Count") >= 80000

ORDER BY

d.DepartmentName,

d.employees.Manager.LastName;

Note that this statement could also be expressed with a GROUP BY clause if the
GetDirectReportsTotalSalaries() method was just computing the sum of
the direct report employees salary as follows:

SELECT FILTERED

d.DepartmentName,

d.employees.Manager.Class_Name AS Position,

d.employees.Manager.EmpId,

d.employees.Manager.LastName,

COUNT(d.employees.Manager.DirectReports.*) AS

"Head Count",

SUM(d.employees.Manager.DirectReports.Salary) AS
Selecting Data 51

Budget

FROM

Department d

WHERE

d.DepartmentName = 'Legal'

GROUP BY

d.DepartmentName,

d.employees.Manager.LastName,

d.employees.Manager.Class_Name,

d.employees.Manager.EmpId

HAVING

(Budget / "Head Count") >= 80000

ORDER BY

d.DepartmentName,

d.employees.Manager.LastName;

Another example of a SQL statement that could use SQL methods to calculate
the employee’s accruals:

SELECT UNFILTERED

d.DepartmentName,

d.employees.EmpId,

d.employees.LastName,

d.employees.GetAccrualsName(Bank::ListBankName(FALSE))

AS "Bank Name",

d.employees.GetAccrualsQuantity(Bank::ListBankName(FALSE
)) AS Total

FROM

Department d

WHERE

d.DepartmentName = 'Legal'

HAVING

Total < 0

ORDER BY

d.DepartmentName,

d.employees.LastName;

NOTE: When a HAVING clause is used without GROUP BY, the entire
objects resulting from the WHERE clause is treated as a single
group. Then, the statement’s Select-list can contain only set
functions, since nothing is specified in GROUP BY clause.
52 Matisse SQL Programmer’s Guide

3.14 Grouping with GROUP BY
When a GROUP BY clause is used with a SELECT statement, the GROUP BY
clause groups the selected objects based on the values of attributes specified by
GROUP BY clause, and returns a single row as summary information for each
grouped objects.

NOTE: All NULL values from grouping attributes are considered equal.

The syntax is:

SELECT ...

WHERE ...

GROUP BY property [, ...]

[HAVING <search condition>]

[ORDER BY property [ASC | DESC] [, ...]]

Where property is a list of comma-separated properties with each property
having the following syntax:

{ [{class | alias }.][navigation.]attribute }

With navigation such as:

navigation ::=

relationship[.({CLASS | ONLY} successor_class)]

[.relationship[.({CLASS | ONLY} successor_class)] ...]

A GROUP BY clause can have up to 16 properties as its grouping criteria. Note
that grouping attribute cannot be of list types nor multimedia types, e.g.,
LIST(INTEGER), IMAGE, or VIDEO.

A simple example is to group movies based on their categories and return the
average running time for each group:

SELECT category, AVG (runningTime)

FROM Movie

GROUP BY category;

category avg

----------------- ------------

Action 108.5

Drama 125.1

When a GROUP BY clause is used, the Select-list can reference:

a. attributes specified in the GROUP BY clause, or
b. any attribute that is used as parameter for set function.

And also, the ORDER BY clause can reference only attributes specified in the
GROUP BY clause.

For example, the next statement is valid:
Selecting Data 53

SELECT

CONCAT ('Category: ', category),

AVG (runningTime)

FROM Movie

GROUP BY category;

while the following is invalid:

SELECT category, title

FROM Movie

GROUP BY category; -- Error!!

because title is neither a grouping attribute nor used as parameter for a set
function.

Grouping by
Class

MtClassName or MtClassOid can be used to group objects by their class. For
example,

SELECT

MtClassName,

AVG(salary)

FROM Employee

GROUP BY

MtClassName;

MtClassName avg

-------------------- --------------

Employee 23504.23

Manager 32119.13

In the example, the objects in the group of Employee consist of only direct
instances of class Employee, excluding objects of class Manager, which is a
subclass of Employee.

Grouping with
Navigation

You can group by objects in navigational queries by specifying the navigation
path in the GROUP BY clause. For example, the following statement lists the
number of contracts per contract type, for each employee position in each
department:

SELECT

 d.DepartmentName,

 d.employees.Class_Name AS Position,

 d.employees.Contract,

 count(d.employees.*)

FROM

 Department d

GROUP BY

 d.DepartmentName,

 d.employees.Class_Name,
54 Matisse SQL Programmer’s Guide

 d.employees.Contract

ORDER BY

 d.DepartmentName,

 d.employees.Class_Name DESC,

 d.employees.Contract ASC;

Grouping by
Composition

You can group by objects based on the values of “part-of” attributes via a
Composition relationship. For example, the following statement lists the
number of employee per city:

SELECT

 e.Address.City,

 COUNT(*)

FROM

 Employee e

GROUP BY

 e.Address.City

ORDER BY

 e.Address.City DESC;

A Composition (“Part of”) relationship in a GROUP BY clause is a relationship
with a maximum cardinality of 1. For example, the following statement lists the
total employees salary for each department:

SELECT

 e.Department.DepartmentName,

 SUM(e.Salary) AS "Total Salary"

FROM

 Employee e

GROUP BY

 e.Department.DepartmentName

ORDER BY

 e.Department.DepartmentName DESC;

While the SQL statement above is correct, the SQL Statement below is
equivalent to the previous one, but does not require a GROUP BY clause since
the Department Names are unique:

SELECT

 d.DepartmentName,

 SUM(d.employees.Salary) AS "Total Salary"

FROM

 Department d

ORDER BY

 d.DepartmentName DESC;

For example, the following statement combines Composition with navigation:

SELECT
Selecting Data 55

 d.DepartmentName,

 d.employees.Address.City,

 SUM(d.employees.Salary)

FROM

 Department d

GROUP BY

 d.DepartmentName,

 d.employees.Address.City

ORDER BY

 d.DepartmentName DESC,

 d.employees.Address.City;

3.15 Filtering with HAVING in GROUP BY
The HAVING clause can restrict the groups of the selected objects to those
groups for which the search condition is true. All predicates in the HAVING
clause must use aliases from the Select-list.

For example, the following statement selects movie categories in which average
running time is more than two hours:

SELECT category, AVG (runningTime) AS AvgTime

FROM Movie

GROUP BY category

HAVING AvgTime > 120;

category AvgTime

----------------- ------------

Drama 125.1

The HAVING clause can reference only aliases from the Select-list.

GROUP BY /
HAVING with
Navigation

The following statement shows how you can group filtered objects in a
navigational query by class, property and composition and restrict the resulting
groups with a fairly complex combination of predicates:

SELECT FILTERED

 Location,

 d.Employees.Contract,

 d.Employees.Class_Name AS Position,

 d.Employees.EmpId,

 d.Employees.LastName,

 d.Employees.Accruals.Bank.BankName AS BankName,

 SUM(d.Employees.Accruals.Quantity) AS Total

FROM

 Department d
56 Matisse SQL Programmer’s Guide

WHERE

 (Location = 'Seattle'

 AND d.Employees.Contract = 'Part Time')

 OR

 (Location = 'Strasbourg'

 AND d.Employees.Contract = 'Contractor')

GROUP BY

 d.Location,

 d.Employees.Contract,

 d.Employees.Class_Name,

 d.Employees.LastName,

 d.Employees.EmpId,

 d.Employees.Accruals.Bank.BankName

HAVING

(BankName = 'Worked Hours' AND Total > 8.00)

OR

(BankName IN LIST(STRING)('Overtime', 'Holiday Overtime')
AND Total < 0);

The next statement shows how to compute complex aggregate values for each
group and how in the HAVING clause you can define predicates that compare
columns:

SELECT FILTERED

 d.DepartmentName,

 d.employees.Class_Name AS Position,

 d.employees.Contract,

 CAST((MIN(d.employees.Salary)/12) AS INT) AS MinSalary,

 CAST((MAX(d.employees.Salary)/12) AS INT) AS MaxSalary,

 COUNT(d.employees.*) AS HeadCount,

 CAST((MIN(d.employees.Salary)/12) AS INT) *
COUNT(d.employees.*) AS MinTotal,

 CAST((MAX(d.employees.Salary)/12) AS INT) *
COUNT(d.employees.*) AS MaxTotal

FROM

 Department d

WHERE

 d.DepartmentName = 'Sales' AND

 (d.employees.MonthlySalary() between 4000 and 5000 OR

 d.employees.MonthlySalary() between 9000 and 11000)

GROUP BY

 d.DepartmentName,

 d.employees.Class_Name,

 d.employees.Contract

HAVING

(MinSalary = MaxSalary AND HeadCount > 1)
Selecting Data 57

OR

(MinTotal * 2 > MaxTotal);

3.16 LIMIT and OFFSET
The LIMIT and OFFSET clauses allow you to retrieve a portion of objects that
are selected by a where-clause.

LIMIT {count | ALL}

OFFSET start_offset

If a LIMIT clause is specified, no more than count objects are returned. If
count is 0, it is the same as omitting the LIMIT clause. LIMIT ALL is the same
as omitting the LIMIT clause.

OFFSET specifies the number (start_offset) of objects to skip from the
beginning of the selected objects.OFFSET 0 is the same as omitting the
OFFSET clause.

If both LIMIT and OFFSET are specified, start_offset number of objects
are skipped before counting the LIMIT objects.

When you use LIMIT and/or OFFSET, it is always a good idea to use them with
an ORDER BY clause that transforms the result into a unique order. Otherwise,
you will get unpredictable result.

For example, the next query returns movies from #21 to #30 when ordered by
movie’s title:

SELECT * FROM Movie ORDER BY Title LIMIT 10 OFFSET 20;

The next statement selects the Movie object that has the largest sales in a stored
method:

BEGIN

DECLARE mvObj Movie;

DECLARE vLimit Integer DEFAULT 1;

SELECT REF(m) INTO mvObj FROM Movie m

ORDER BY TotalSales DESC

LIMIT vLimit;

...

END;

The next statement limits the number of iteration of the FOR statement to no
more than 10 in a stored method:

BEGIN

FOR obj AS SELECT REF(c) FROM Movie c LIMIT 10 DO

....

END FOR;
58 Matisse SQL Programmer’s Guide

...

END;

3.17 Subqueries
Although the current release of Matisse does not support subqueries, the same
queries can be achieved by using Block statements or SQL methods. With SQL
methods, queries become more readable and extensible, and they can be
polymorphic.

Here are a few examples demonstrating how you can rewrite subqueries with
Block statements and SQL methods.

Subquery for
Comparison

A very common use of subquery is a query that returns a scalar value which is
used for value comparison. For example,

SELECT * FROM Class1 c1

WHERE c1.attr1 > (SELECT AVG(c2.attr2) FROM Class2 c2);

the above query can be rewritten using the SQL method defined below:

SELECT * FROM Class1 c1

WHERE c1.attr1 > Class2::AvgOfAttr2();

CREATE STATIC METHOD AvgOfAttr2()

RETURNS DOUBLE

FOR Class2

BEGIN

DECLARE avg DOUBLE;

SELECT AVG(attr2) INTO avg FROM Class2;

RETURN avg;

END;

the above query can be rewritten using the SQL Block statement defined below:

BEGIN

DECLARE avg DOUBLE;

SELECT AVG(attr2) INTO avg FROM Class2;

SELECT * FROM Class1 c1 WHERE c1.attr1 > avg;

END;

Subquery used
with IN

Subqueries used with IN predicate can be rewritten using an SQL method that
returns a value of list type. For example,

SELECT * FROM Class1 c1

WHERE c1.attr1 IN

(SELECT c2.attr2 FROM Class2 c2
Selecting Data 59

WHERE c2.attr22 = c1.attr11);

The above query can be rewritten as following:

SELECT * FROM Class1 c1

WHERE c1.attr1 IN Class2::method2(c1.attr11);

where the SQL method is defined below:

CREATE STATIC METHOD method2(arg1 INTEGER)

RETURNS LIST(INTEGER)

FOR Class2

BEGIN

DECLARE res LIST(INTEGER) DEFAULT LIST(INTEGER)();

FOR obj AS SELECT REF(c) FROM Class2 c WHERE attr22 = arg1
DO

ADD(res, obj.attr2);

END FOR;

RETURN res;

END;

This example demonstrates that correlated subqueries can be substituted by
SQL methods as well.

Subquery with
EXISTS

The existence test with a subquery can also be rewritten using an SQL method
that returns true or false based on the number of selected rows. For example,

SELECT * FROM Class1 c1

WHERE EXISTS

(SELECT * FROM Class2 c2 WHERE c2.attr2 > c1.attr1);

The above statement can be rewritten as following:

SELECT * FROM Class1 c1

WHERE Class2::ObjsExist(c1.attr1) = TRUE;

where the SQL method is defined as follows:

CREATE STATIC METHOD ObjsExist(arg1 INTEGER)

RETURNS BOOLEAN

FOR Class2

BEGIN

DECLARE cnt INTEGER;

SELECT COUNT(*) INTO cnt FROM Class2 c2

WHERE c2.attr2 > arg1;

IF cnt > 0 THEN

RETURN true;

ELSE

RETURN false;

END IF;
60 Matisse SQL Programmer’s Guide

END;

3.18 Specifying PARALLEL
The PARALLEL query hint specifies the degree of parallelism requested for the
execution of a SQL statement. The actual number of threads used by a parallel
query is determined at query plan execution initialization and is determined by
the degree of parallelism and number of threads available in the SQL parallel
processing pool of threads. The maximum degree of parallelism is set at the
server level and defines the upper value which determines the maximum
number of threads that are being used. You need to set the appropriate database
configuration parameters to enable and to control the resources dedicated to
parallel processing of queries.

SELECT PARALLEL(4)

d.DepartmentName,

d.employees.EmpId,

d.employees.LastName,

d.employees.GetAccrualsName(Bank::ListBankName(FALSE))
AS "Bank Name",

d.employees.GetAccrualsQuantity(Bank::ListBankName(FALSE
)) AS Total

FROM

Department d

ORDER BY

d.DepartmentName,

d.employees.LastName;
Selecting Data 61

4 Using Numeric Values

4.1 Introduction
After reading this section, you should understand how Matisse analyzes
arithmetic expressions and what data types result from different operations. You
should also know how to:

Use comparison operators

Specify arithmetic operations on expressions

Specify an interval test

Negate expressions

Use the ANY and ALL keywords with numeric values

4.2 Comparison Operators
Table 4.1 lists the various comparison operators that are available:

You can use these operators, for example, to compare an attribute value to a
constant or to an expression as shown in the following section.

Table 4.1 Comparison Operators

Operator Meaning

= Equals

<> Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to
62 Matisse SQL Programmer’s Guide

4.3 Bitwise Operators
Table 4.2 lists the various bitwise operators that are available:

You can use these operators in the SELECT list and the WHERE clause as well as
in block statement and SQL methods.

4.4 Performing Arithmetic Operations

Expressions and
Arithmetic
Operators

In Matisse SQL, an arithmetic expression can be any of the following:

expression

attribute

constant

value function

sum of expressions

product of expressions

quotient of expressions

difference between two expressions

An operation involving two expressions has the following syntax:

expression1 operator expression2

The binary operators that are valid are the multiplication operator *, the
division operator /, the addition operator + and the subtraction operator -,
which also acts as a negation operator when preceding a single expression.

The order of evaluation of an expression that contains two or more operators is
determined by the hierarchy of operators. The sub-expressions within
parentheses are evaluated first. The evaluation is performed in the following
order, from left to right:

1. – negation operation

2. *, / multiplication and division

Table 4.2 Bitwise Operators

Operator Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

~ Invert bits

<< Left shift

>> Right shift
Using Numeric Values 63

3. +, – addition and subtraction

Evaluating an
Expression: An
Example

To select the movies which would become longer than 90 minutes if their
running time was increased by 15%, you could write a statement as shown
below:

SELECT * FROM movie
WHERE (runningTime * 115 / 100) >= 90

AND runningTime <= 90;

Note that the expression to be evaluated in this request has the following
format:

(expression1 * constant1 / constant2)

To evaluate this expression, Matisse SQL multiplies expression1 by
constant1. Then the product of this operation is divided by constant2.

A NULL value may result from processing an expression if one of the elements
of the expression is not a numeric value type. Eventually, if the expression
returns NULL, the first predicate in the above statement returns a logic value
UNKNOWN since it cannot be evaluated.

4.5 Result Types from Arithmetic Expressions
The general format for an arithmetic operation between two expressions is the
following:

expression1 operator expression2

In any arithmetic operation, the expressions to be operated on (the operands)
must be numeric values.

The types resulting from the arithmetic operations are summarized in Table 4.3.

Table 4.3 Types Resulting from Arithmetic Operation

Operator Expression1 Expression2 Result

+, –, *, / LONG LONG LONG

NUMERIC NUMERIC NUMERIC

NUMERIC LONG

LONG NUMERIC

LONG DOUBLE DOUBLE

DOUBLE LONG

DOUBLE NUMERIC

NUMERIC DOUBLE

DOUBLE DOUBLE
64 Matisse SQL Programmer’s Guide

When the operator is the division operator (/) and expression2 has the value
0, the DIVISION_BY_ZERO error will be returned. For any operation, if the
result is more than the precision that the type can hold, the
NUMERICOVERFLOW error will be returned.

NOTE: When one of the terms of an arithmetic expression is NULL, the
value of the resulting expression is NULL.

The negation operation produces the result types shown in Table 4.4.

NOTE: The negation operation cannot be applied to BYTE type, since it
does not allow negative number.

4.6 Performing an Interval Test
To test for values within an interval you can use a BETWEEN .. AND predicate as
shown below:

expression

[NOT] BETWEEN expression AND expression

Note that you can check that a value does not fall into an interval by inserting
the keyword NOT immediately before BETWEEN.

To select the movies where the running time is between 90 minutes and 120
minutes, you can write the following statement:

SELECT * FROM movie WHERE runningTime

BETWEEN 90 AND 120;

Note that the expression BETWEEN 90 AND 120 is equivalent to the following:

WHERE runningTime >= 90

AND runningTime <= 120;

Table 4.4 Type Resulting from the Negation Operation

Operator Expression1 Result

– FLOAT FLOAT

DOUBLE DOUBLE

SHORT SHORT

INTEGER INTEGER

LONG LONG

NUMERIC NUMERIC
Using Numeric Values 65

4.7 Using the ANY and ALL Keywords
The ANY and ALL keywords let you compare a value to a set of values. The
syntax is as follows:

expression comparison_operator
{ANY | ALL} expressions

For more information please refer to the paragraph relating to the ANY and
ALL keywords in section 6.8, Using the ANY and ALL Keywords.
66 Matisse SQL Programmer’s Guide

5 Using Null Values

5.1 Introduction
This section explains how to use null values. After reading this section, you
should know:

What a null value is

How to test for null values using the IS NULL keyword

5.2 What Is a Null Value?
In Matisse, the attribute of an object can be explicitly assigned a null value. An
attribute for which no value has been assigned and for which there is no default
value defined in the database schema is also seen as having a null value.

5.3 The IS NULL Keyword
You can check if an expression leads to a null value with the IS NULL
keyword.

The syntax for evaluation of a null value is as follows:

expression IS [NOT] NULL

The predicate:

expression IS NULL

is true if the result of the evaluation of the expression expression is null.

The predicate:

expression IS NOT NULL

is equivalent to the predicate:

NOT (expression IS NULL).

Example:
Comparison
with Null Values

The following request selects all the objects of class movie for which the
attribute runningTime has a null value:

SELECT * FROM movie WHERE runningTime IS NULL;
Using Null Values 67

A NULL value always leads to an UNKNOWN result when used directly in a
comparison or any other operation. For example, when the runningTime value
is null, the comparison in the following query will evaluate to UNKNOWN and
thus will not return any object.

SELECT * FROM movie

WHERE runningTime = NULL;

The behavior of IS [NOT] NULL is shown in Table 5.1.

Table 5.1 IS [NOT] NULL

Expression Value IS NULL IS NOT NULL

Null value True False

Valid value False True
68 Matisse SQL Programmer’s Guide

6 Using Text Values

6.1 Introduction
Some topics covered in this section are similar to those presented in section 4,
Using Numeric Values. The ANY and ALL keywords, for example, can also be
used with numeric values.

After reading this section, you should know how to:

Compare text values

Specify wildcard characters in a pattern

Specify an escape character with ESCAPE keyword

Use the ANY and ALL keywords

Select data by entry points

6.2 What Does Text Comparison Mean?
You can compare character strings with the same comparison operators that you
use to compare numeric values. These operators are listed in Table 6.1.

The comparison of a character string with a numeric value or any other non-
character string value evaluates to UNKNOWN.

If the two character strings have the same characters at each position, they are
equal. For example, the following character strings are equal:

'Rocky' = 'Rocky'

The following predicates evaluate to true:

'Rock' < 'Rocky'

'Mocky' < 'Rocky'

Table 6.1 Text Comparison Operators

Operator Meaning

= Equals

<> Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to
Using Text Values 69

When two character strings are compared, the trailing blank spaces are not
ignored but are taken into account. For example, the following predicates
evaluate to false:

'Rocky ' = 'Rocky'

'Rocky ' = 'Rocky '

The following predicate evaluates to true:

'Rocky ' = 'Rocky '

How Character
Strings Are
Compared

The character comparison between two strings is based on the ASCII (or
EBCDIC) character values. A character string is greater than another character
string when one or more of its characters has a higher ASCII (or EBCDIC)
value than the character occupying the same position in the other character
string.

All comparisons are performed on the basis of the number assigned to each
character in the ASCII (or EBCDIC) character table shown in Table 6.2.

Table 6.2 ASCII Characters and Their Numeric Values

SP
32

0
48

@
64

P
80

‘
96

p
112

!
33

1
49

A
65

Q
81

a
97

q
113

"
34

2
50

B
66

R
82

b
98

r
114

#
35

3
51

C
67

S
83

c
99

s
115

$
36

4
52

D
68

T
84

d
100

t
116

%
37

5
53

E
69

U
85

e
101

u
117

&
38

6
54

F
70

V
86

f
102

v
118

’
39

7
55

G
71

W
87

g
103

w
119

(
40

8
56

H
72

X
88

h
104

x
120

)
41

9
57

I
73

Y
89

i
105

y
121

*
42

:
58

J
74

Z
90

j
106

z
122

+
43

;
59

K
75

[
91

k
107

{
123
70 Matisse SQL Programmer’s Guide

The letter B, for example, has a number that is higher than A. In addition, lower
case letters all have numbers that are greater than that of any upper case letter.
While a has a number that is greater than those of all the other upper case
letters, it has a number lower than that of b.

The following statements are equivalent and find all the movies other than
Rocky with a running time greater than 90 minutes:

SELECT * FROM movie
WHERE title <> 'Rocky'

AND runningTime > 90;

SELECT * FROM movie
WHERE NOT (title = 'Rocky'

OR runningTime <= 90);

6.3 What Is a Pattern?
A pattern is a string of at most 255 characters, delimited by apostrophes (' '),
that lets you specify the different characteristics you are searching for in a text
string. These characteristics may include the following:

Length of the string

Constant characters in the string

Variable (wildcard) characters in the string

6.4 How to Use the % Wildcard Character
A pattern accepts the same alphanumeric characters that can be used in any text
string. In addition, a pattern may contain the following wildcard character:

%

,
44

<
60

L
76 92

l
108

|
124

-
45

=
61

M
77

]
93

m
109

}
125

.
46

>
62

N
78

^
94

n
110

~
126

/
47

?
63

O
79

_
95

o
111

Table 6.2 ASCII Characters and Their Numeric Values (Continued)
Using Text Values 71

The percent sign % is a wildcard character that represents any number of
characters or no characters. Look, for example, at the following pattern:

'Ro%'

This pattern specifies the subset of character strings that starts with the
characters Ro.

You can specify the % wildcard character at the beginning or in the middle of a
character string, as shown in the examples below:

'%ocky'

'R%ky'

The second pattern specifies the subset of character strings beginning with the
character R and ending with the characters ky.

6.5 How to Use the Underscore Wildcard Character
The underscore character _ functions similarly to the percent sign except that it
represents only one character. The following example shows how this character
is used:

'Rock_'

The above example specifies the subset of character strings containing five
characters whose first 4characters make the substring ‘Rock’.

6.6 Specifying a Pattern with the LIKE Keyword
When comparing two text strings, you can use the following syntax:

expression LIKE 'pattern'

The text string expression is compared to the master text string or pattern.
The condition expression LIKE 'pattern' is true if and only if the value of
expression matches with 'pattern'. Note that pattern needs to be a literal
constant string.

An expression is comparable to a pattern only if it evaluates to a character
string. If an expression evaluates to a value other than a character string, the
comparison will evaluate to UNKNOWN. If the expression evaluates to a character
string, the comparison will evaluate to TRUE or FALSE.

The following request selects all the movies whose names consist of at least
two separate words, or consist of at least two separate words linked by a
hyphen (-):
72 Matisse SQL Programmer’s Guide

SELECT * FROM movie
WHERE name LIKE '% %'

OR name LIKE '%-%';

6.7 How to Use an Escape Character
The escape character is a character string composed of just one character. When
it is defined, it becomes possible to use one of the wildcard characters as an
ordinary character as long as you insert an escape character immediately before
it.

For example, suppose you are looking for all the character strings that are 8
characters in length and begin with the characters '%ABC'. Since % already
serves duty as the wildcard character, you cannot specify the ordinary character
% with the wildcard character %. In this case, you must precede the character %
with an escape character.

When you compare a text string with a pattern, you must define the escape
character with the ESCAPE keyword, as shown in the following example:

expression LIKE '\%ABC%' ESCAPE '\'

This clause specifies all the character strings that are at least 4 characters in
length and begin with the characters %ABC.

Some character strings that meet these criteria are listed below:

%ABC

%ABCDE

Note that if you want to specify the character used as the escape character in a
search string, you must also precede it with itself, as shown below:

expression LIKE 'AB|%C||' ESCAPE '|'

This clause selects all the character strings that begin with the substring AB and
end with the substring C|.

You cannot use the '\' for the search pattern escape character if some
backslash escape sequences (\n, \t, \\, etc.) are used in the pattern.

expression LIKE '\\|%%' ESCAPE '|';

This clause specifies all the character strings begins with \%.

Some character strings that meet these criteria are listed below:

\%

\%\ABC
Using Text Values 73

6.8 Using the ANY and ALL Keywords
The ANY and ALL keywords allows you to compare an expression to a set of
expressions. They have the following syntax:

expression
operator { ANY | ALL}

(expression [[,expression]...])

Quantified
Comparison
with the ANY
Keyword

You can use the ANY keyword to formulate a quantified comparison between
one character string and a set of character strings. Note that the operators used
to check for equality or inequality between text values are the same as those
discussed earlier in this section.

The comparison with the ANY keyword

Is TRUE if the set of expressions contains at least 1 expression for which the
comparison is true.

Is FALSE if the comparison is false for every expression contained in the set
of expressions.

Comparison
with the ALL
Keyword

The comparison with the ALL keyword

Is TRUE if the comparison is true for every expression contained in the set
of expressions.

Is FALSE if there is at least one expression in the set of expressions for
which the comparison is false.

Equivalent
Comparisons

Certain negations of comparisons using ALL are equivalent to comparisons
using ANY. Table 6.3 lists these equivalences.

Table 6.3 Equivalent Expressions Using ANY and ALL

Expression Using NOT and ALL Equivalent Expression

NOT (expression <>
ALL expressions)

expression =
ANY expressions

NOT (expression =
ALL expressions)

expression <>
ANY expressions

NOT (expression <=
ALL expressions)

expression >
ANY expressions

NOT (expression <
ALL expressions)

expression >=
ANY expressions

NOT (expression >=
ALL expressions)

expression <
ANY expressions

NOT (expression >
ALL expressions)

expression <=
ANY expressions
74 Matisse SQL Programmer’s Guide

Alternate Syntax The keyword IN can be used instead of = ANY and the keywords NOT IN can
be used instead of <> ALL. Note, for example, the statement:

SELECT * FROM movie
WHERE title = ANY('Rocky', 'Grease');

is equivalent to the statement:

SELECT * FROM movie
WHERE title IN LIST(STRING) ('Rocky', 'Grease');

In the same way, the statement:

SELECT * FROM movie
WHERE title <> ALL ('Rocky','Grease');

is equivalent to the request:

SELECT * FROM movie
WHERE title NOT IN LIST(STRING) ('Rocky','Grease');

Examples The following statement selects the objects of the class movie whose value for
the attribute title is Rocky, Grease, or Casper:

SELECT * FROM movie
WHERE title =

ANY('Rocky','Grease','Casper')

This request is equivalent to the following statement:

SELECT * FROM movie
WHERE NOT

(title <> ALL('Rocky','Grease','Casper'))

Both statements are equivalent to the following one:

SELECT * FROM movie
WHERE title = 'Rocky' OR name = 'Grease'
OR title = 'Casper'

6.9 Selecting Objects by Entry Points
The Entry Point Dictionaries of Matisse offer an efficient mechanism to
implement a full text search capability.

When an Entry Point Dictionary is defined in the database schema for a given
attribute, the creation of an object and the subsequent updates of the attribute
automatically populate the dictionary with a list of keywords generated from
the new value of the attribute. These keywords are called entry points.

Entry Point Dictionaries can be accessed to retrieve objects either from Matisse
SQL or language bindings, e.g., the Java binding.
Using Text Values 75

Exact Match
Search

To search for objects through an entry point with an exact match, you must use
the following syntax:

[NOT] [<navigation>.]ENTRY_POINT (entry_point_dictionary)

{=| <>} 'entry_point'

Assuming that you have defined on the attribute synopsis for the class movie
an Entry Point Dictionary that indexes every word in a text string, you may
select the movies whose synopsis contains the word “adventure” with the
following statement:

SELECT * FROM movie
WHERE ENTRY_POINT(MovieSynopsisDict) = 'adventure';

You can combine entry points predicates with any other predicates by using OR
and AND keywords, for instance:

SELECT * FROM movie
WHERE ENTRY_POINT(MovieSynopsisDict) = 'adventure'

OR ENTRY_POINT(MovieSynopsisDict) = 'lost'

AND title <> 'Rocky';

ENTRY_POINT() may be preceded by a relationship navigation, for example:

SELECT * FROM movie m
WHERE m.starring.ENTRY_POINT(LastNameDict) = 'Cruise';

Pattern
Matching

To search for objects through an entry point with pattern matching, you must
use the following syntax:

ENTRY_POINT(entry_point_dictionary) [NOT] LIKE

[ESCAPE 'escape-char']

The same rules as the ones described for the clause LIKE apply for the wildcard
and escape characters.

You may select the movies whose synopsis contains the pattern ‘adventure%’
for instance to qualify objects containing either ‘adventure’ or ‘adventurers’:

SELECT * FROM movie
WHERE ENTRY_POINT(MovieSynopsisDict) LIKE 'adventure%';
76 Matisse SQL Programmer’s Guide

7 Using Relationships

7.1 Introduction
This section describes how to navigate through relationships within an SQL
statement. After reading this section, you should know:

What a relationship is

How to use the IN keyword

How to use relationships in the Select-list and the where clause

7.2 What Is a Relationship?
In Matisse a relationship defines a link between an object and other objects.
From a given object, called a predecessor, the objects that a relationship points
to are referred to as the successors of the object through that relationship. The
successors of a relationship can be either a set of objects or a NULL value when
there is no successor for the relationship.

The successor objects are either ordered or unordered. When a relationship is
defined as LIST, its successors are ordered. When a relationship is defined as
SET, its successors are unordered.

7.3 Positional Access
A successor object at a specific position in a relationship can be accessed using
the positional access syntax:

relationship_name(number)

For example, the following query statement returns movies whose first
starring’s last name is Brody:

SELECT m.Name FROM movie m

WHERE m.Starring(1).LastName = ‘Brody’;

The first successor object is at position 1. When the number is out of range, i.e.,
more than the number of successors or less than 1, the positional access
expression returns NULL.

For an unordered relationship, i.e., defined as SET relationship, positions of
successors are system-defined, and not guaranteed to be the same every time.
Using Relationships 77

7.4 Navigational Queries
You can navigate through the relationships within the Select-list or the
WHERE clause.

Using a Single
Relationship in
the Select-list

The syntax of a relationship expression is as follows:

[{class | alias }.]navigation.{attribute|*}

With navigation such as:

navigation ::=

relationship[.({CLASS | ONLY} successor_class)]

[.relationship[.({CLASS | ONLY} successor_class)] ...]

For instance to retrieve the directors of the movies with a title like “Rocky%”,
you would write the following statement:

SELECT directedBy.* FROM movie

WHERE title LIKE 'Rocky%';

The same statement with full class qualification would be expressed as follows:

SELECT movie.directedBy.lastname

FROM movie

WHERE movie.title LIKE 'Rocky%';

You can also filter the results from a class or subclass of the successors by
specifying a successor class in the navigational expression using the keyword
CLASS. For instance if you want to find the movie directors who are also
starring in some movies, you could write the following query:

SELECT m.starring.(CLASS movieDirector).lastname

FROM movie m;

If you filter the successors using the keyword ONLY instead of CLASS, the
result includes only the ‘proper’ instances of the class, i.e., excluding the
instances of its subclasses. For example, the next query returns the starring
actors of each movie who are NOT movie directors:

SELECT m.starring.(ONLY artist).lastname

FROM movie m;

Using
Relationships
and Other
Columns in the
Select-list

The relationships with multiple successors are “exploded” in the projection
result in a similar way a relational join would do. For instance, a movie starring
two actors would display a result as follows:

SELECT m.title,

m.starring.lastname AS Starring

FROM movie m

WHERE m.title = 'Titanic';
78 Matisse SQL Programmer’s Guide

Result:

Title Starring

------- ---------

Titanic DiCaprio

Titanic Winslet

Using a
Relationship in
the WHERE
Clause

You can access attributes through relationship navigation in the predicate
expressions in the WHERE clause with the following syntax:

[{class | alias }.]navigation.attribute

When a relationship is multi-valued, which means that several objects can be
reached through this relationship, the comparison with an other expression is
true if any of the objects evaluates to true.

For instance, to retrieve the movies where any actor has a last name starting
with ‘S’, you would write the following statement:

SELECT * FROM movie

WHERE starring.lastname LIKE 'S%';

You can combine this with a relationship in the Select-list. For instance, the
following query is valid and returns the directors for the movies that qualify:

SELECT directedBy.* FROM movie
WHERE starring.lastname LIKE 'S%';

The same query expressed with full class qualification is expressed as follows:

SELECT movie.directedBy.* FROM movie
WHERE movie.starring.lastname LIKE 'S%';

Relationship
COUNT

You can also check for the cardinality of a relationship with the built-in
function COUNT which can be expressed with the following syntax:

COUNT (relationship [({CLASS | ONLY}.successor_class)])

For instance, to check for the movies starring more than 10 actors, you could
write the following statement:

SELECT * FROM movie
WHERE COUNT(starring) > 10;

To check for the movies where one movie director is starring:

SELECT * FROM movie
WHERE COUNT(starring.(CLASS movieDirector)) = 1;

To check for the movies starring two actors excluding movie directors:

SELECT * FROM movie
WHERE COUNT(starring.(ONLY artist)) = 2;
Using Relationships 79

Dealing with
Empty
Relationships

When a relationship has no successor in Matisse, it is always implemented as a
NULL relationship. Consequently, the following query has a correct syntax, but
it will never retrieve any object:

SELECT * FROM movie
WHERE COUNT(starring) = 0;

This query should be rewritten as follows in order to find the movies for which
there is no actor:

SELECT * FROM movie
WHERE starring IS NULL;

If you want to retrieve the movies where there are between 0 and 5 actors, you
could express it as follows:

SELECT * FROM movie
WHERE COUNT(starring) <= 5

OR starring IS NULL;

7.5 The IN Keyword
By using the IN keyword, you can select objects based on the evaluation of the
inclusion of two sets of objects. The sets of objects can be either a selection
result obtained with an other statement or the objects that are successors
through a relationship.

The keyword IN has the following syntax:

{ALL | ANY} set1 IN set2

For each object belonging to set1, the keyword IN checks whether or not it
also belongs to set2.

If the keyword ALL is specified, the inclusion is true if all the objects of set1
belong to set2. If ANY is specified, the inclusion is true if any of the objects of
set1 belong to set2.

For instance, to select the movies where all the directors are also starring in the
movie you would use the following command:

SELECT * FROM movie
WHERE ALL directedBy IN starring;

To select the movies where any director is also starring in the movie you would
use one of the following command:

SELECT * FROM movie
WHERE ANY directedBy IN starring;
80 Matisse SQL Programmer’s Guide

You can combine with the keyword NOT. For instance, to select the movies
where no director is starring in the movie:

SELECT * FROM movie
WHERE NOT ANY directedBy IN starring;

Comparing with
a List of
Successors

In addition to comparing the successors of an object through different
relationships, you can also compare successors to the result of a previous
statement execution.

For example, if you want to know which movies have a director whose name
starts with ‘R’ and is also starring in the movie, you can first select the
directors by their name:

SELECT REF(m) FROM movieDirector m
WHERE m.lastname LIKE 'R%'
INTO mDirectors;

Then, you get the movies with the following request:

SELECT * FROM movie
WHERE ANY starring IN mDirectors;

Note that with the navigation capability of Matisse SQL, the two queries could
be written in only one statement, without the need to use an intermediate result:

SELECT * FROM movie
WHERE directedBy.lastname LIKE 'R%'

AND ANY directedBy IN starring;
Using Relationships 81

8 Version Travel

8.1 Introduction
With Matisse you can save and query consistent versions of the database;
a saved version can be accessed until it is explicitly deleted. This section
describes how to select objects which have been updated, inserted, or deleted
across two different database versions.

For additional details on accessing database versions, see section 9, Managing
Transactions and Versions.

8.2 Specifying a Version Travel Query
You can specify the type of version travel operation in the FROM list, with the
following syntax:

FROM UPDATED

({ [ONLY]class | selection }, {BEFORE | AFTER} version)

FROM INSERTED

({ [ONLY]class | selection }, AFTER version)

FROM DELETED

({ [ONLY]class | selection }, BEFORE version)

When using the keyword BEFORE, you may specify version with either a
version name or CURRENT for the most recent version.

For instance, if you save a version every day for seven days, you may want to
find the objects updated between the versions named day1 and day2, with
day1 older than day2. For this, you first set the access mode as of day2, then
you can execute a version travel query as follows:

SET TRANSACTION READ ONLY day2;

SELECT * FROM UPDATED (movie, AFTER day1);

The objects that you have selected will be read in the version context for the
newer version day2.

You can also use the keyword BEFORE to retrieve the objects as of the older
version day1. Note that in this case the WHERE clause is evaluated in the day1
context.

SET TRANSACTION READ ONLY day1;
82 Matisse SQL Programmer’s Guide

SELECT * FROM UPDATED (movie, BEFORE day2) WHERE rating LIKE
'PG%';

For inserted objects, you can only access the objects as of the newer version.

SET TRANSACTION READ ONLY day2;

SELECT * FROM INSERTED (movie, AFTER day1);

For deleted objects, you can only access the objects as of the older version.

SET TRANSACTION READ ONLY day1;

SELECT * FROM DELETED (movie, BEFORE day2);

SELECT * FROM DELETED (movie, BEFORE CURRENT);
Version Travel 83

9 Managing Transactions and
Versions

9.1 Introduction
This section describes how to access or modify data in a Matisse database.
After reading this section, you should be able to perform the following
operations:

Obtain read-only access on a database

Obtain read/write access on a database

Commit a transaction

Cancel a transaction

9.2 Starting a Version Access
To obtain read-only access on the current connection, you must use the
following syntax:

SET TRANSACTION READ ONLY [savetime]

To obtain read only access at the latest logical time, you can use the following
command:

SET TRANSACTION READ ONLY

To obtain read only access for a particular savetime, which is a consistent
“snapshot” of the database at a particular time (for more information about
savetime, refer to the “Getting Started with Matisse” document), you must
specify the savetime, as in the following example:

SET TRANSACTION READ ONLY August2006;

The savetime specified can be either the fully qualified name generated by
Matisse upon commit, or only the prefix as shown on the above example.

Using a fully qualified name allows you to identify a savetime without
ambiguity when several savetimes have been generated with the same prefix.
For instance, if we suppose that the version August2006 was saved at the
logical time 2A (in hexadecimal), the statement from the previous example
could be expressed as follows:

SET TRANSACTION READ ONLY August20060000002A
84 Matisse SQL Programmer’s Guide

NOTE: If you perform a SELECT on a connection where you have not
previously set an access mode, the request will be executed in
read-only version mode on the latest version of the database.

9.3 Ending a Version Access
To end a read only access to database, you can use the following syntax:

ROLLBACK [WORK]

The optional keyword WORK has no effect on the execution. In either case, the
current version access is terminated.

9.4 Starting a Transaction
You may want to start a transaction on the current connection explicitly. This
may be necessary if you have previously set the connection to version access.

To start a transaction, you can use the following syntax:

SET TRANSACTION READ WRITE [priority]

The optional argument priority lets you specify the priority of the
transaction. Permitted values for this argument are integers in the range 0
(lowest priority) to 9 (highest priority). By default, the priority is 0.

For example, to start a transaction with the highest priority, you would write the
following command:

SET TRANSACTION READ WRITE 9;

9.5 Committing a Transaction
To validate a transaction, you can use the following syntax:

COMMIT [WORK] [VERSION savetime_prefix]

The following commands are equivalent:

COMMIT

COMMIT WORK

The optional argument savetime_prefix enables you to save the logical time
resulting from the transaction as a savetime. (The actual identifier of the
savetime will be made up of the prefix followed by the logical time that
corresponds to the transaction.)

To commit a transaction and save the corresponding logical time as a savetime,
you can use a command like the following:
Managing Transactions and Versions 85

COMMIT WORK VERSION August2006;

This command commits the transaction. The logical time resulting from the
transaction will be saved in a savetime. The prefix of this savetime will be
August2006.

NOTE: The name of the full savetime is output by COMMIT command
when it has concluded successfully.

Note that a savetime prefix cannot exceed 20 characters in length.

9.6 Cancelling a Transaction
There are times when you may want to cancel the modifications of a
transaction. To do this, use the ROLLBACK command. This command has the
following syntax:

ROLLBACK [WORK]

You can use the command ROLLBACK by itself or followed by the keyword
WORK. In either case the current transaction is cancelled. The following
commands are equivalent:

ROLLBACK

ROLLBACK WORK
86 Matisse SQL Programmer’s Guide

10 SQL Functions

This section explains how to use Matisse SQL functions. Matisse SQL has
many built-in functions that are applicable to various data types. You can use
these functions anywhere expressions are allowed.

After reading this section, you should know how to use:

Expressions functions

Character string functions

List functions

Set functions (aggregate functions)

Set functions for relationship aggregation

Datetime functions

Conversion functions

Numeric functions

10.1 Expressions Functions
The following functions simplify the management of NULL values.

COALESCE

NULLIF

COALESCE

Syntax COALESCE(expr1, expr2 [, expr3 ... , expr15])

Purpose Evaluates the arguments in order and returns the current value of the first
expression that initially does not evaluate to NULL. If all arguments are NULL,
COALESCE returns NULL.

Arguments expr1, expr2 [, expr3 ... , expr15]

These can be Matisse attributes or any expressions. The function requires at
least 2 arguments.

Example sql> SELECT a.firstName, a.lastName,

2> COALESCE(a.firstName, a.lastName) AS firstNotNull

3> FROM artist AS a;
SQL Functions 87

NULLIF

Syntax NULLIF(expr1, expr2)

Purpose Returns the first expression if the two expressions are not equal. If the
expressions are equal, NULLIF returns a null value of the type of the first
expression.

Arguments expr1, expr2

These can be Matisse attributes or any expressions.

Example sql> SELECT AVG(NULLIF(runningTime, 0)) FROM movie;

10.2 Character String Functions
The following character string functions return character string. The type of
returned character string is STRING.

CONCAT

LEFT

LOWER

LPAD

LTRIM

REPLACE

REPLICATE

REVERSE

RIGHT

RPAD

RTRIM

SUBSTR (SUBSTRING)

TRIM

UPPER

The following character string functions return numeric values. The return type
is INTEGER.

INSTR

LENGTH (CHAR_LENGTH)

LOCATE

CONCAT

Syntax CONCAT(string1, string2)
88 Matisse SQL Programmer’s Guide

Purpose Concatenates two argument strings and returns the result.

Arguments string1, string2

These can be Matisse attributes or any expressions that return a character string.
If one of the arguments is NULL or NULL pointer and the other argument is a
valid string, the valid string is returned.

Example sq1> SELECT a.firstName, a.lastName,

2> CONCAT(a.firstName, a.lastName) concatenated

3> FROM artist AS a;

firstName lastName concatenated

------------- ------------- ----------------

Leonardo DiCaprio LeonardoDiCaprio

INSTR

Syntax INSTR(string1, string2 [, n [, m]])

Purpose Returns the character position in string1 where string2 appears.

Arguments string1

The character string that you want to search. If this is not a valid character
string, NULL is returned.

string2

The character string that you want to find in string1. If this is not a valid
character string, NULL is returned.

n

The character position where the function starts to search. If, for example, n is
2, the search begins from the second character in string1. If n is negative,
counts backward from the end of string1 and searches backward from that
position. If n is 0, it is treated as 1. The default value is 1.

m

When string2 appears in string1 more than once, m specifies which
occurrence you want to find. If m is not positive, NULL is returned. The default
value is 1.

Description The return value is relative to the beginning of string1 regardless of the value
of n. When string2 is not found in string1 under the specified condition, the
function returns 0. When string2 is an empty string and string1 is a valid
character string, the result is non-zero number.

Example sql> SELECT INSTR('MATISSE MATINEE', 'MAT', 1, 2) FROM ...;

SQL Functions 89

9

sql> SELECT INSTR('MATISSE MATINEE', 'MAT', -1) FROM ...;

9

LEFT

Syntax LEFT(string,len)

Purpose Returns the leftmost len characters from string, or NULL if any argument is
NULL.

Arguments string

This can be a Matisse attribute or any expression that returns a character string.
If the argument is not a character string, this function returns NULL.

len

The maximum number of characters returned. If the argument is NULL, this
function returns NULL.

Example sql> SELECT m.title, LEFT(m.title,2) AS len FROM movie AS m;

title left

-------------- --------

Rocky Ro

LENGTH

Syntax LENGTH(string)

CHAR_LENGTH(string)

Purpose Returns the number of characters in a string.

Arguments string

This can be a Matisse attribute or any expression that returns a character string.
If the argument is not a character string, this function returns NULL.

Description If the argument is an empty string, the function returns 0. If the argument is a
NULL pointer, the function returns NULL.

Example sql> SELECT m.title, LENGTH(m.title) t_length FROM movie m;

title t_length

---------- ---------

Rocky 5
90 Matisse SQL Programmer’s Guide

LOCATE

Syntax LOCATE(substr, string [,n])

Purpose Returns the position of the first occurrence of substr in string, starting at
position n. Returns 0 if substr is not in string.

Arguments substr

The character string that you want to find in string. If this is not a valid
character string, NULL is returned.

string

The character string that you want to search. If this is not a valid character
string, NULL is returned.

n

The character position where the function starts to search. If, for example, n is
2, the search begins from the second character in string. If n is negative,
counts backward from the end of string and searches backward from that
position. If n is 0, it is treated as 1. The default value is 1.

Example sql> SELECT LOCATE('MAT', 'MATISSE MATINEE') FROM ...;

locate

1

LOWER

Syntax LOWER(string)

Purpose Returns a string in which all characters are converted to lowercase.

Arguments string

This can be a Matisse attribute or any expression that returns a character string.
If the argument is not a character string, this function returns NULL.

Example sql> SELECT m.title, LOWER(m.title) low FROM movie m;

title low

-------- ------

Rocky rocky

LPAD

Syntax LPAD(string,len,padstr)
SQL Functions 91

Purpose Returns the string string, left-padded with the string padstr to a length of
len characters. If string is longer than len, the return value is shortened to
len characters.

Arguments string

This can be a Matisse attribute or any expression that returns a character string.
If the argument is not a character string, this function returns NULL.

len

The number of characters returned. If the argument is NULL, this function
returns NULL.

padstr

A set of characters to pad string with.

Example sql> SELECT m.title, LPAD(m.title,8,'.') FROM movie AS m;

title lpad

------------- --------------

Rocky ...Rocky

LTRIM

Syntax LTRIM(string1 [, string2])

Purpose Removes characters from the left of string1, with all the lifetimes characters
that appear in string2 removed, and returns the result.

Arguments string1

The string characters from which you want to remove leading characters. This
can be a Matisse attribute or any expression that returns a character string.

string2

A set of characters to be removed from string1. When this is omitted, it is
substituted by a single space.

Description Trimming terminates when a character that does not appear in string2 is
encountered. If all characters in string1 are removed, an empty string is
returned. If string1 is an empty string, an empty string is returned. If
string1 is a NULL pointer, NULL is returned.

Example sql> SELECT LTRIM('baacde', 'ab') trimmed FROM ...;

trimmed

cde
92 Matisse SQL Programmer’s Guide

REPLACE

Syntax REPLACE(string,fromstr,tostr)

Purpose Returns string with all occurrences of the fromstr replaced by tostr.

Arguments string

This can be a Matisse attribute or any expression that returns a character string.
If the argument is not a character string, this function returns NULL.

fromstr

The character string that you want to replace.

tostr

The character string that you are replacing with.

Example sql> SELECT REPLACE('matisse', 'm', 'M') FROM ...;

replace

Matisse

REPLICATE

Syntax REPLICATE(string,n)

Purpose Returns a string consisting of the string string repeated n times. If n is less
than 1, returns an empty string. Returns NULL if string or n are NULL.

Arguments string

This can be a Matisse attribute or any expression that returns a character string.
If the argument is not a character string, this function returns NULL.

n

The number of times the string is repeated. If the argument is NULL, this
function returns NULL.

Example sql> SELECT REPLICATE('matisse', 2) FROM ...;

replicate

matissematisse

REVERSE

Syntax REVERSE(string)
SQL Functions 93

Purpose Returns string with the order of the characters reversed.

Arguments string

This can be a Matisse attribute or any expression that returns a character string.
If the argument is not a character string, this function returns NULL.

Example sql> SELECT REVERSE('matisse') FROM ...;

reverse

essitam

RIGHT

Syntax RIGHT(string,len)

Purpose Returns the rightmost len characters from string, or NULL if any argument
is NULL.

Arguments string

This can be a Matisse attribute or any expression that returns a character string.
If the argument is not a character string, this function returns NULL.

len

The maximum number of characters returned. If the argument is NULL, this
function returns NULL.

Example sql> SELECT m.title, RIGHT(m.title,2) AS len FROM movie AS
m;

title right

------------- --------

Rocky ky

RPAD

Syntax RPAD(string,len,padstr)

Purpose Returns the string string, right-padded with the string padstr to a length of
len characters. If string is longer than len, the return value is shortened to
len characters.

Arguments string

This can be a Matisse attribute or any expression that returns a character string.
If the argument is not a character string, this function returns NULL.

len
94 Matisse SQL Programmer’s Guide

The number of characters returned. If the argument is NULL, this function
returns NULL.

padstr

A set of characters to pad string with.

Example sql> SELECT m.title, RPAD(m.title,8,'.') AS low FROM movie
AS m;

title rpad

------------- --------------

Rocky Rocky...

RTRIM

Syntax RTRIM(string1 [, string2])

Purpose Removes characters from the right of string1, with all the rightness characters
that appear in string2 removed, and returns the result.

Arguments string1

The string characters from which you want to remove some trailing characters.
This can be a Matisse attribute or any expression that returns a character string.

string2

A set of characters to be removed from string1. When this is omitted, it is
substituted by a single space.

Description Trimming terminates when a character that does not appear in string2 is
encountered. If all characters in string1 are removed, an empty string is
returned. If string1 is an empty string, an empty string is returned. If
string1 is a NULL pointer, NULL is returned.

Example sql> SELECT RTRIM('abc d ef', 'def ') trimmed FROM ...;

trimmed

abc

SUBSTR

Syntax SUBSTR(string, m [, n])

SUBSTRING(string, m [, n])

Purpose Returns a portion of character string, beginning at position m, n characters long.

Arguments string
SQL Functions 95

The input character string. This can be a Matisse attribute or any expression
that returns a character string. If this is not a valid character string, NULL is
returned.

m

The position in string where the extraction begins. If m is positive, the function
counts from the beginning of string. If m is greater than the length of string, an
empty string is returned. If m is 0, it is treated as 1. If m is negative, the function
counts backwards from the end of string. If the length of string plus m is less
than or equal to 0, the position is treated as the beginning of string.

n

The number of characters to be extracted. If n is omitted, returns all characters
beginning from the position specified by m to the end of string. If n is less than
1, an empty string is returned. If string does not have n characters after position
m, returns all characters from the position m to the end of string.

Example sql> SELECT SUBSTR('MATISSE SQL', 6) extracted FROM ...;

extracted

SE SQL

sql> SELECT SUBSTR('MATISSE SQL', -6, 2) extracted FROM ...;

extracted

SE

TRIM

Syntax TRIM(string1 [, string2])

Purpose Returns string1 with string1 leading an trailing characters that appear in
string2 removed. The default value for string2 is a single space (' ').

Arguments string1

This can be a Matisse attribute or any expression that returns a character string.
If the argument is not a character string, this function returns NULL.

string2

A set of characters to be removed from string1. When this is omitted, it is
substituted by a single space.

Example sql> SELECT TRIM('babacdeabba', 'ab') AS trimmed FROM ...;

trimmed

cde
96 Matisse SQL Programmer’s Guide

UPPER

Syntax UPPER(string)

Purpose Returns a string in which all characters are converted to uppercase.

Arguments string

This can be a Matisse attribute or any expression that returns a character string.
If the argument is not a character string, this function returns NULL.

Example sql> SELECT m.title, UPPER(m.title) up FROM movie m;

title up

------------ -----------

Rocky ROCKY

10.3 List Functions
Matisse provides SQL list functions that allow you to access elements in a
list, to get the number of elements, or to do aggregate calculations on a list. The
list types that can be used with the SQL list functions are:

LIST(SHORT)

LIST(INTEGER)

LIST(LONG)

LIST(FLOAT)

LIST(DOUBLE)

LIST(BOOLEAN)

LIST(DATE)

LIST(TIMESTAMP)

LIST(INTERVAL)

LIST(STRING)

LIST(NUMERIC(p, s))

The followings are the functions that works with list types:

AVG

MIN

MAX

SUM

COUNT

ELEMENT
SQL Functions 97

SUBLIST

AVG

Syntax AVG(list)

Purpose Returns the average value of all the elements in a list.

Argument list

A list. If this argument is not a list, NULL is returned. The function accepts the
numeric list types as well as LIST(INTERVAL).

Description The return type of the function is DOUBLE regardless of the type of list except
for LIST(INTERVAL), in which case INTERVAL is returned, and
LIST(NUMERIC), in which case NUMERIC is returned.

Example sql> SELECT AVG(LIST(10, 20, 40)) average FROM ...;

average

23.3333

ELEMENT

Syntax ELEMENT(list, n)

Purpose Returns an element at position n in list.

Argument list

A list. If this argument is not a list, NULL is returned. The function accepts all
types of list.

n

The position at which you want to get an element. If n is 0, it is treated as 1. If
n is negative, the function counts backwards from the end of the list. If n is out
of bounds of list, NULL is returned.

Example sql> SELECT ELEMENT(LIST(INTEGER)(10, 20, 30, 40), 2)

2> FROM ... ;

20

sql> SELECT ELEMENT(LIST(INTEGER)(10, 20, 30, 40), -2)

2> FROM ... ;

98 Matisse SQL Programmer’s Guide

30

MAX

Syntax MAX(list)

Purpose Returns the maximum value of the elements in a list.

Argument list

A list. If this argument is not a list, NULL is returned. The function accepts the
numeric list types as well as LIST(DATE), LIST(TIMESTAMP),and
LIST(INTERVAL).

Example sql> SELECT MAX(LIST(INTEGER)(10, 20, 30, 40))

2> FROM ... ;

40

MIN

Syntax MIN(list)

Purpose Returns the minimum value of the elements in a list.

Argument list

A list. If this argument is not a list, NULL is returned. The function accepts the
same types as MAX.

Example sql> SELECT MIN(LIST(INTEGER)(10, 20, 30, 40))

2> FROM ... ;

10

SUBLIST

Syntax SUBLIST(list, n [, m])

Purpose Returns a portion of the list, beginning at position n, m elements long.

Argument list

A list. If this argument is not a list, NULL is returned.

n

SQL Functions 99

The position in list where the extraction begins. If n is positive, the function
counts from the beginning of list. If n is greater than the number of elements
in list, NULL is returned. If n is 0, it is treated as 1. If n is negative, the
function counts backwards from the end of list. If the number of elements in
list plus n is less than or equal to 0, the position is treated as the beginning of
list.

m

The number of elements to be extracted. If m is omitted, returns all elements
beginning from the position specified by n to the end of list. If m is less than
1, an empty list is returned. If list does not have m elements after the position
n, returns all elements from the position n to the end of list.

Example sql> SELECT SUBLIST(LIST(INTEGER)(10, 20, 30, 40), 2)

2> as ranking, title

3> FROM movie;

ranking title

--------- ---------

20 Rocky

30 Rocky

40 Rocky

Example sql> SELECT SUBLIST(LIST(INTEGER)(10, 20, 30, 40), -3, 2)

2> as ranking, title

2> FROM movie;

ranking title

--------- ---------

20 Rocky

30 Rocky

SUM

Syntax SUM(list)

Purpose Returns the sum of the values in list.

Argument list

A list. If this argument is not a list, NULL is returned. The function accepts the
numeric list types as well as LIST(INTERVAL).

Example sql> SELECT SUM(LIST(INTEGER)(10, 20, 30, 40)) total

2> FROM ... ;

total

100
100 Matisse SQL Programmer’s Guide

COUNT

Syntax COUNT(list)

Purpose Returns the number of elements in list.

Argument list

A list. If this argument is not a list, NULL is returned.

Description If list is an empty list, the function returns 0. Note that if an attribute has not
been assigned a value yet, that is, the attribute’s value is NULL, this function
does not return 0, but it returns NULL.

LIST

Syntax LIST(type)({constant1 [, constant2, ...]})

Purpose Constructs a new constant list and returns it. See section 10.3, List Functions,
for more information.

Example INSERT INTO boxOffice (topReceipts)

VALUES (LIST(NUMERIC(10, 2))(34.5, 20.0, 8.9, 3.3, 2.1));

10.4 Set Functions
Matisse provides the following set functions to summarize data from multiple
objects as a result of SQL query execution. These functions work only in SQL
projection. You cannot put more than one set function in an SQL statement in
this release.

AVG

COUNT

MAX

MIN

SUM

AVG

Syntax AVG ([class.|alias.]attribute)

Purpose Returns the average value for an attribute from the set of objects which qualify
the query.
SQL Functions 101

Argument attribute

Numeric types and INTERVAL are accepted. Note that if this argument is a type
of list, the function acts as a list function.

Description The result types are as follows:

Argument Result

--------------- --------------

Any numeric type except NUMERIC DOUBLE

NUMERIC NUMERIC

INTERVAL INTERVAL

Example To get the average running time:

SELECT AVG(runningTime) FROM movie;

COUNT

Syntax COUNT ([{class | alias}.]*)

Purpose Returns the number of objects which qualify the query.

Example For instance, the following queries are equivalent to get the count of all the
movies in the database:

SELECT COUNT(*) FROM movie;

SELECT COUNT(movie.*) FROM movie;

SELECT COUNT(m.*) FROM movie m;

To get the count of all the movie directors who are directing certain movies:

SELECT SUM(COUNT(m.movieDirector)) FROM movie m;

MAX

Syntax MAX (attribute)

Purpose Returns the maximum value for an attribute from the set of objects which
qualify the query.

Argument attribute

Numeric types, DATE, TIMESTAMP, and INTERVAL are accepted. Note that if this
argument is a list, the function acts as a list function.

Description The result types are as follows:
102 Matisse SQL Programmer’s Guide

Argument Result

--------------- --------------

Any numeric type Same type

DATE DATE

TIMESTAMP TIMESTAMP

INTERVAL INTERVAL

MIN

 Syntax MIN (attribute)

Purpose Returns the minimum value for an attribute from the set of objects which
qualify the query.

 Argument attribute

Numeric types, DATE, TIMESTAMP, and INTERVAL are accepted. Note that if this
argument is a list, the function acts as a list function.

Description The result types are as follows:

Argument Result

--------------- --------------

Any numeric type Same type

DATE DATE

TIMESTAMP TIMESTAMP

INTERVAL INTERVAL

SUM

Syntax SUM (attribute)

Purpose Returns the sum value for an attribute from the set of objects which qualify the
query.

Argument attribute

Numeric types and INTERVAL are accepted. Note that if this argument is a list,
the function acts as a list function.

Description The result types are as follows:

Argument Result

--------------- --------------

Any numeric type Same type

INTERVAL INTERVAL

Example To get the sum of running time:
SQL Functions 103

SELECT SUM(runningTime) FROM movie;

10.5 Set functions for relationship aggregation
Matisse provides the following set functions to summarize data from multiple
successor objects of a relationship.

AVG

COUNT

MAX

MIN

SUM

Suppose we have two classes Department and Employee where Department
has a relationship employees referencing a set of Employee objects, and
Employee has an attribute salary of type NUMERIC.

The next SELECT statement returns the name of each department and the total
salary of employees working for the department:

SELECT d.name, SUM (d.employees.salary) FROM Department d;

name sum

--------------- -------------

Engineering 3467600.00

Marketing 944890.00

The SUM function here sums salaries of all the employees of a department, i.e.,
the function aggregates some data of all the successor objects of a relationship.

The general form is:

SetFunction (<navigation>.attribute)

<navigation> ::=

relationship[.({CLASS | ONLY} successor_class)]

[.relationship[.({CLASS | ONLY} successor_class)] ...]

In order to use the functions for relationship aggregation, attribute needs to
be of atomic type, not of list type. If attribute is of list type, e.g.,
LIST(INTEGER), the function works as list function explained in the
section 10.3, List Functions, and no aggregation on relationship happens.

If no successor object is found for a relationship, these set functions return
NULL.
104 Matisse SQL Programmer’s Guide

AVG

Syntax AVG ([class.|alias.]navigation.attribute)

Purpose Returns the average value for attribute from the set of successor objects
accessible through navigation.

Argument attribute

Numeric types and INTERVAL are accepted. Note that if this argument is of list
type, the function acts as a list function.

Example To get the average salary for each department:

SELECT d.name, AVG (d.employees.salary) FROM Department d;

COUNT

Syntax COUNT ([class.|alias.]navigation)

Purpose Returns the number of successor objects accessible through the relationship
navigation.

Example For instance, the following SELECT statement returns each department name
and the total number of employees in each department:

SELECT d.name, COUNT(d.employees) FROM Department d;

MAX

Syntax MAX ([class.|alias.]navigation.attribute)

Purpose Returns the maximum value for attribute from the successor objects
accessible through the relationship navigation.

Argument attribute

Numeric types, DATE, TIMESTAMP, and INTERVAL are accepted. Note that if this
argument is of list type, the function acts as a list function.

Example The following SELECT statement returns each department name and the
highest salary in the department:

SELECT d.name, MAX(d.employees.salary) FROM Department d;
SQL Functions 105

MIN

Syntax MIN ([class.|alias.]navigation.attribute)

Purpose Returns the minimum value for attribute from the successor objects
accessible through the relationship navigation.

Argument attribute

Numeric types, DATE, TIMESTAMP, and INTERVAL are accepted. Note that if this
argument is of list type, the function acts as a list function.

Example The following SELECT statement returns each department name and the lowest
salary in the department:

SELECT d.name, MIN(d.employees.salary) FROM Department d;

SUM

Syntax SUM ([class.|alias.]navigation.attribute)

Purpose Returns the sum value for attribute from the set of successor objects that are
accessible through the relationship navigation.

Argument attribute

Numeric types and INTERVAL are accepted. Note that if this argument is of list
type, the function acts as a list function.

10.6 Datetime Functions
This section explains the following datetime functions.

CURRENT_DATE

CURRENT_TIMESTAMP

EXTRACT

CURRENT_DATE

Syntax CURRENT_DATE()

Synonyms CURRENT_DATE
CURDATE()

Purpose Returns the current date in the Universal Coordinated Time zone.
106 Matisse SQL Programmer’s Guide

CURRENT_TIMESTAMP

Syntax CURRENT_TIMESTAMP()

Synonyms CURRENT_TIMESTAMP
NOW()

Purpose Returns the current timestamp in Universal Coordinated Time zone, UTC.

EXTRACT

Syntax EXTRACT(<datetime_field> FROM <value>)

<datetime_field> ::=

YEAR

| MONTH

| DAY

| HOUR

| MINUTE

| SECOND

| MICROSECOND

<value> ::=

timestamp value

| date value

| interval value

Purpose Returns the specified datetime field from a timestamp, date, or interval value.
When extracting from a timestamp value, the value returned is in UTC
(Universal Coordinated Time) time zone.

Note that when extracting from a date value, only YEAR, MONTH, DAY can
be used as <datetime_field>. When extracting from an interval value, DAY,
HOUR, MINUTE, SECOND, MICROSECOND can be used as
<datetime_field>.

Example The following example extracts the month field from a date value:

SELECT EXTRACT (MONTH FROM DATE '1999-11-10') FROM ...;

11

10.7 Conversion Functions
This section describes the following conversion function:

CAST
SQL Functions 107

CAST

Syntax CAST (value AS targetType)

Purpose For built-in data types:

CAST converts a value of built-in data type into another built-in data type.
Table 10.1 shows which built-in data types can be converted to which other
built-in data types, where the first column represents the source data type and
the data types at the top represent the target data types.

Table 10.1 Supported casts between built-in data types

CAST does not support any list types. If cast is not supported, the
INVALID_CAST error is returned.

(a) When the source type is STRING, string formats for each target type are:
DATE 'yyyy-mm-dd'
TIMESTAMP 'yyyy-mm-dd hh:MM:ss[.uuuuuu]'
INTERVAL '[+|-]d hh:MM:ss[.uuuuuu]'
BOOLEAN 'TRUE' or 'FALSE' (case insensitive)

If the source string cannot be converted because of incorrect format,
INVALID_CAST error is returned.

(b) When the source type is STRING and the target type is CHARACTER, the
first character in the source string is returned.

(c) If a source string or a source number value is too big to be represented as
the target number type, NUMERICOVERFLOW error is returned.

to
STRING Number

types
DATE TIMESTAMP INTERVAL BOOLEAN CHARACTER TEXT

from STRING x x xa xa xa xa xb x

Number
types

x xc xd

DATE x x

TIMESTAMP x x x

INTERVAL x x

BOOLEAN x x

CHARACTER x xd x

TEXT x x
108 Matisse SQL Programmer’s Guide

(d) The conversion between a number and a character is based on ASCII code,
i.e., a number is converted into a character whose ASCII value is equivalent to
the source number, and vice versa.

When the source value is NULL, CAST returns NULL.

Example The following example casts a string into a date:

SELECT CAST ('1999-11-10' AS DATE) FROM ...

The next example normalizes the results of arithmetic division operation into a
specific precision and scale:

SELECT CAST (num1/num2 AS NUMERIC(19, 4)) FROM ...;

Note that if the precision and the scale of the target NUMERIC type are not
specified, the default precision and scale (19, 2) are used.

The next example converts a character into an integer:

SELECT CAST(CAST('a' AS CHARACTER) AS INTEGER) FROM ...;

97

Note that we need to cast ‘a’ to the character type since there is no literal
expression for a single character.

The next example returns the NUMERICOVERFLOW error, because
‘123456789’ is too big for SHORT type, which ranges from -32768 to 32767.

SELECT CAST ('123456789' AS SHORT) FROM ...; -- Error!!

10.8 Numeric Functions
BIT_COUNT

ABS

ACOS

ASIN

ATAN

ATAN2

CEILING

COS

COT

DEGREES

EXP

FLOOR
SQL Functions 109

LN

LOG10

LOG2

LOG

MOD

PI

POWER

RADIANS

ROUND

SIGN

SIN

SQRT

TAN

TRUNCATE

BIT_COUNT

Syntax BIT_COUNT (number)

Purpose Return the number of bits that are set in the argument number.

ABS

Syntax ABS (number)

Purpose Returns the absolute value of number.

ACOS

Syntax ACOS (number)

Purpose Returns the arc cosine of number, that is, the value whose cosine is number.
Returns NULL if number is not in the range -1 to 1.
110 Matisse SQL Programmer’s Guide

ASIN

Syntax ASIN (number)

Purpose Returns the arc sine of number, that is, the value whose sine is number. Returns
NULL if number is not in the range -1 to 1.

ATAN

Syntax ATAN (number)

Purpose Returns the arc tangent of number, that is, the value whose tangent is number.

ATAN2

Syntax ATAN2 (Y,X)

Purpose Returns the arc tangent of the two variables X and Y. It is similar to calculating
the arc tangent of Y / X, except that the signs of both arguments are used to
determine the quadrant of the result.

CEILING

Syntax CEILING (number)

Purpose Returns the smallest integer value not less than number.

COS

Syntax COS (number)

Purpose Returns the cosine of number, where number is given in radians.

COT

Syntax COT (number)

Purpose Returns the cotangent of number.
SQL Functions 111

DEGREES

Syntax DEGREES (number)

Purpose Returns the argument number, converted from radians to degrees.

EXP

Syntax EXP (number)

Purpose Returns the value of e (the base of natural logarithms) raised to the power of
number. The inverse of this function is LN().

FLOOR

Syntax FLOOR (number)

Purpose Returns the largest integer value not greater than number.

LN

Syntax LN (number)

Purpose Returns the natural logarithm of number; that is, the base-e logarithm of
number. If number is less than or equal to 0, then NULL is returned.

LOG10

Syntax LOG10 (number)

Purpose Returns the base-10 logarithm of number.

LOG2

Syntax LOG2 (number)

Purpose Returns the base-2 logarithm of number.
112 Matisse SQL Programmer’s Guide

LOG

Syntax LOG (B, X)

Purpose Returns the logarithm of X to the base B. If X is less than or equal to 0, or if B is
less than or equal to 1, then NULL is returned.

MOD

Syntax MOD(m, n)

Purpose MOD returns the remainder of m divided by n. Returns m if n is 0.

The function takes only integer types (i.e., BYTE, SHORT, INTEGER, and LONG)
as its parameters. The result type is the type of the divisor n. The result is
negative only if m is negative.

PI

Syntax PI ()

Purpose Returns the value of pi.

POWER

Syntax POWER (X, Y)

Purpose Returns the value of X raised to the power of Y.

RADIANS

Syntax RADIANS (number)

Purpose Returns the argument number converted from degrees to radians.

ROUND

Syntax ROUND (X[, D])
SQL Functions 113

Purpose Rounds the argument X to D decimal places. The rounding algorithm depends
on the data type of X. D defaults to 0 if not specified. D can be negative to cause
D digits left of the decimal point of the value X to become zero.

SIGN

Syntax SIGN (number)

Purpose Returns the sign of the argument number as -1, 0, or 1, depending on whether
number is negative, zero, or positive.

SIN

Syntax SIN (number)

Purpose Returns the sine of number, where number is given in radians.

SQRT

Syntax SQRT (number)

Purpose Returns the square root of a non negative number number.

TAN

Syntax TAN (number)

Purpose Returns the tangent of number, where number is given in radians.

TRUNCATE

Syntax TRUNCATE (X, D)

Purpose Returns the number X, truncated to D decimal places. If D is 0, the result has no
decimal point or fractional part. D can be negative to cause D digits left of the
decimal point of the value X to become zero.
114 Matisse SQL Programmer’s Guide

11 Defining a Schema

This section explains the SQL statements that are used to define a database
schema, that is, those that define namespaces, classes, attributes, relationships,
indices, entry-point dictionaries, and methods. These statements are called Data
Definition Language (DDL). DDL allows you to create, alter, or drop schema
objects.

11.1 Namespaces
The CREATE NAMESPACE statement allows you to define a namespace into
which classes, indexes and entry-point dictionaries can be defined. To modify
the namespace definition, you can use the ALTER NAMESPACE statement. To
remove a namespace from the database, use the DROP NAMESPACE statement.

CREATE

Syntax CREATE NAMESPACE [IF [NOT] EXISTS [schema_object]]
nsname[.subnsname]

schema_object ::=

SCHEMA_OBJECT(NAMESPACE,[<ns path name>.]<ns name>)

| SCHEMA_OBJECT(CLASS,[<ns path name>.]<class name>)

| SCHEMA_OBJECT(ATTRIBUTE,[<ns path name>.]<cls name>.<att
name>)

| SCHEMA_OBJECT(RELATIONSHIP,[<ns path name>.]<cls
name>.<rel name>)

| SCHEMA_OBJECT(METHOD,[<ns path name>.]<cls name>.<mth
name>)

| SCHEMA_OBJECT(INDEX,[<ns path name>.]<index name>)

| SCHEMA_OBJECT(ENTRY_POINT DICTIONARY,[<ns path
name>.]<entry point name>)

Creating
Namespace

To create a namespace in the database, you can use the CREATE NAMESPACE
statement. The following statements create the com.matisse.example
namespace hierarchy:

CREATE NAMESPACE com;

CREATE NAMESPACE com.matisse;

CREATE IF NOT EXISTS NAMESPACE com.matisse.example;
Defining a Schema 115

ALTER

Syntax ALTER NAMESPACE [IF [NOT] EXISTS [schema_object]]
nsname[.subnsname] RENAME TO new_nsname

schema_object ::=

SCHEMA_OBJECT(NAMESPACE,[<ns path name>.]<ns name>)

| SCHEMA_OBJECT(CLASS,[<ns path name>.]<class name>)

| SCHEMA_OBJECT(ATTRIBUTE,[<ns path name>.]<cls name>.<att
name>)

| SCHEMA_OBJECT(RELATIONSHIP,[<ns path name>.]<cls
name>.<rel name>)

| SCHEMA_OBJECT(METHOD,[<ns path name>.]<cls name>.<mth
name>)

| SCHEMA_OBJECT(INDEX,[<ns path name>.]<index name>)

| SCHEMA_OBJECT(ENTRY_POINT DICTIONARY,[<ns path
name>.]<entry point name>)

Renaming
Namespace

To rename an existing namespace, you can use ALTER NAMESPACE RENAME
statement. For example, the following statement modifies the example sub-
namespace name:

ALTER NAMESPACE IF EXISTS com.matisse.example

RENAME TO examples;

DROP

Syntax DROP NAMESPACE [IF [NOT] EXISTS [schema_object]]
nsname[.subnsname]

schema_object ::=

 SCHEMA_OBJECT(NAMESPACE,[<ns path name>.]<ns name>)

| SCHEMA_OBJECT(CLASS,[<ns path name>.]<class name>)

| SCHEMA_OBJECT(ATTRIBUTE,[<ns path name>.]<cls name>.<att
name>)

| SCHEMA_OBJECT(RELATIONSHIP,[<ns path name>.]<cls
name>.<rel name>)

| SCHEMA_OBJECT(METHOD,[<ns path name>.]<cls name>.<mth
name>)

| SCHEMA_OBJECT(INDEX,[<ns path name>.]<index name>)

| SCHEMA_OBJECT(ENTRY_POINT DICTIONARY,[<ns path
name>.]<entry point name>)

Dropping
Namespace

To remove a namespace from the database, you can use the DROP NAMESPACE
statement. The following statement removes the examples sub-namespace:
116 Matisse SQL Programmer’s Guide

DROP NAMESPACE IF EXISTS com.matisse.examples;

NOTE: a DROP NAMESPACE statement does not delete the sub-
namespaces, classes and other schema objects defined inside
the namespace. All schema objects inside the namespace are
moved into the root namespace.

CURRENT_NAMESPACE

Syntax SET CURRENT_NAMESPACE { DEFAULT | nsname[.subnsname] }

Renaming
Namespace

This option sets the default namespace where to find schema objects unless
their names are fully qualified. DEFAULT refers to the root namespace. For
example, the following statement sets the default namespace
com.matisse.example.media to where schema objects can be manipulated
without their full qualified name:

SET CURRENT_NAMESPACE com.matisse.example.media;

CREATE CLASS movie (...);

11.2 Classes, Attributes, and Relationships
The CREATE CLASS statement allows you to define a class with attributes and
relationships. To modify the class definition, you can use the ALTER CLASS
statement. It allows you to add, remove, or modify an attribute or relationship.
To remove a class from the database, use the DROP CLASS statement.

CREATE

Syntax CREATE {CLASS | TABLE} [IF [NOT] EXISTS [<schema_object>]]
class

[{UNDER | INHERIT} superclass [, ...]]

(

<property> [, ...]

<class_constraint> [, ...]

)

<schema_object> ::=

 SCHEMA_OBJECT(NAMESPACE,[<ns path name>.]<ns name>)

| SCHEMA_OBJECT(CLASS,[<ns path name>.]<class name>)
Defining a Schema 117

| SCHEMA_OBJECT(ATTRIBUTE,[<ns path name>.]<cls name>.<att
name>)

| SCHEMA_OBJECT(RELATIONSHIP,[<ns path name>.]<cls
name>.<rel name>)

| SCHEMA_OBJECT(METHOD,[<ns path name>.]<cls name>.<mth
name>)

| SCHEMA_OBJECT(INDEX,[<ns path name>.]<index name>)

| SCHEMA_OBJECT(ENTRY_POINT DICTIONARY,[<ns path
name>.]<entry point name>)

<property> ::=

<attribute_name> <attribute_type>

[DEFAULT <literal>] [NOT NULL] |

<relationship_name> [READONLY]

REFERENCES [LIST | SET] (<successor_class>)

[CARDINALITY (min, max)]

[INVERSE inv_class.inverse_relationship }]

<class_constraint> ::=

<unique_constraint> |

<referential_constraint>

<unique_constraint> ::=

[CONSTRAINT <name>] {UNIQUE | PRIMARY KEY}

(<attribute_name> [, ...])

<referential_constraint> ::=

[CONSTRAINT <name>] FOREIGN KEY (<attribute_name> [, ...])

REFERENCES <referenced_class> (<attribute_name> [, ...])

<attribute_type> ::=

AUDIO [(<max>)]|

IMAGE [(<max>)]|

VIDEO [(<max>)]|

TEXT [(<max>)] [<char_code>]|

CLOB [(<max>)] [<char_code>]|

BOOLEAN |

BYTE | TINYINT

SHORT | SMALLINT

INTEGER | INT

LONG | BIGINT

NUMERIC [(<precision>[,<scale>])]|

FLOAT | REAL

DOUBLE [PRECISION]|

CHAR [(<n>)]| CHARACTER |
118 Matisse SQL Programmer’s Guide

STRING [<char_code>]|

VARCHAR [(<n>)][<char_code>]|

NVARCHAR [(<n>)] |

DATE |

TIMESTAMP |

INTERVAL |

BYTES [(<max>)] |

LIST(BOOLEAN [, <max>]) |

LIST(SHORT [, <max>]) |

LIST(INTEGER [, <max>]) |

LIST(LONG [, <max>])|

LIST(NUMERIC [(<precision>[,<scale>] [, <max>]))|

LIST(FLOAT [, <max>])|

LIST(DOUBLE [, <max>])|

LIST(STRING [, <max>])|

LIST(DATE [, <max>])|

LIST(TIMESTAMP [, <max>])|

LIST(INTERVAL [, <max>])

<char_code> ::=

CHARACTER SET (UTF8 | UTF16)

<literal>: See section 2.1, What Is a Constant?

<successor_class>: Class as a successor type for relationship.

<inv_class>: Class where inverse_relationship is defined.

Inheritance Class inheritance can be specified using the keyword UNDER or INHERIT. For
example, to define the movieDirector class as a subclass of the artist class,

CREATE CLASS movieDirector INHERIT artist (

...

);

Matisse supports multiple inheritance. The INHERIT clause can have more than
one class. For example, to define the movieDirector class as a subclass of
both the artist class and the director class,

CREATE CLASS movieDirector INHERIT artist, director (

...

);

The INHERIT clause is optional.

Attribute An attribute is defined with its name, type and an optional default value.
Possible types are shown above in the syntax. An attribute can accept only one
type, or a NULL value unless the NOT NULL keyword is specified. For example,
the values for the attribute synopsis in the following example can be STRING
or NULL type:
Defining a Schema 119

CREATE CLASS movie (

synopsis STRING,

...

);

while the attribute title in the following example can be only STRING type:

CREATE CLASS movie (

title STRING NOT NULL,

...

);

An attribute may have a default value. For example,

CREATE CLASS movie (

category STRING DEFAULT 'non genre',

...

);

If you do not set a value for the category attribute in a movie object, the object
will have the string “non genre” for the attribute as default value.

For more information about constant literal, please refer to section 2.1, What Is
a Constant?.

Note that the attributes defined in this syntax are local to the class.

Note that attribute definitions and relationships definition can appear in a class
definition in any order.

Maximum Size of
Attribute

With the type VARCHAR(n), you can set the maximum length of characters to n.
The maximum length needs to be between 1 and 2147483648 (2G). The default
maximum length is 2G.

With the media types like AUDIO(n) or BYTES(n), you can set the maximum
size in bytes. The maximum size needs to be between 1 and 2147483648 (2G).
The default maximum size is 2G. The maximum size can be specified like 10K
or 20M for 10 kilo-bytes or 20 mega-bytes respectively.

CREATE CLASS movie (

title VARCHAR(100),

preview VIDEO(5M),

...

);

NOTE: For ODBC: This maximum length or size is returned as the
maximum column size for these types. If the maximum length of
size is not specified, 2147483648 is returned.

For the list types, you can optionally specify the maximum number of elements
in a list with the following syntax, e.g.,:
120 Matisse SQL Programmer’s Guide

LIST(INTEGER, 20)

Relationship A relationship is defined with its name, a class of successor objects, an optional
inverse relationship and optional cardinality numbers. For example, the next
statement defines a relationship playingMovies for the class Theater:

CREATE CLASS Theater (

playingMovies REFERENCES (movie)

);

The next examples define a relationship directedBy whose successor class is
movieDirector and inverse relationship is direct defined in the
movieDirector class:

CREATE CLASS movie (

directedBy REFERENCES (movieDirector)

INVERSE movieDirector.direct,

...

);

CREATE CLASS movieDirector (

direct REFERENCES (movie)

INVERSE movie.directedBy,

...

);

In the above example, the cardinality numbers for the relationship are not
provided. The default values for the minimum relationship cardinality is 0 and
the maximum one is unlimited. The cardinality definition in the following
statement is same as the default:

CREATE CLASS movie (

directedBy REFERENCES (movieDirector)

CARDINALITY (0, -1)

INVERSE movieDirector.direct,

...

);

To let a single movie director direct a movie, the relationship cardinality should
be (1, 1), or (0, 1) in which case a movie does not necessarily have to have a
director. For example,

CREATE CLASS movie (

directedBy REFERENCES (movieDirector)

CARDINALITY (0, 1)

INVERSE movieDirector.direct,

...

);
Defining a Schema 121

By default, the successor objects of a relationship is not ordered and does not
keep their order as you add or remove successor objects so that Matisse can
store these objects in any order for best performance. However, if the LIST
keyword is following REFERENCES, the successor objects do keep their order.
For example:

CREATE CLASS movie (

directedBy REFERENCES LIST (movieDirector)

INVERSE movieDirector.direct,

...

);

In Matisse, relationships can be given an explicit directional orientation, that is,
a regular or an inverse relationship. You cannot manipulate objects through a
relationship that is explicitly defined as an inverse relationship. The
relationships defined above are not given an explicit directional orientation.
You can set a movieDirector object through the directedBy relationship in
a movie object, and you also can set movie objects through the relationship
direct in a movieDirector object.

To define an inverse relationship explicitly, use the READONLY keyword as
shown below, for example:

CREATE CLASS car (

wheels REFERENCES (tire)

INVERSE tire.componentOf,

...

);

CREATE CLASS tire (

componentOf READONLY REFERENCES (car)

CARDINALITY (0, 1)

INVERSE car.wheels,

...

);

This is useful in application development when you want to prohibit defining
interfaces that manipulate car objects through the componentOf relationship
in the tire class. That is, you can define an interface like setWheels(tire1,
tire2, ...) or replaceWheel(tire, position) in the car class but you
cannot define an interface like detachFrom(car) in the tire class.

Note again that attribute definitions and relationship definitions can appear in a
class definition in any order.

Unique Constraint A class can contain unique constraints and/or referential constraints. Unique
constraint enforces the uniqueness of values of an attribute or a set of up to four
attributes. The attributes used for unique constraint cannot be nullable, i.e., they
need to be NOT NULL.
122 Matisse SQL Programmer’s Guide

For example, if you want to make the pair of movie title and its category
unique:

CREATE CLASS movie (

title VARCHAR(150) NOT NULL,

category VARCHAR(50) NOT NULL,

CONSTRAINT unique_title_category UNIQUE (title, category)

);

A unique constraint can use up to 256 characters, thus the sum of the sizes for
the attributes should not exceed 256.

Note that using PRIMARY KEY instead of UNIQUE has the same effect for unique
constraint.

Referential
Constraint

The referential constraint is provided for the purposes of compatibility with
relational database products. It generates a relationship (and its inverse
relationship) between the class (table) and the referenced class (table).

For example, the following two statements will generate a relationship
Companies_companyId and its inverse relationship to_Persons_companyId
between class Persons and class Companies:

CREATE TABLE Companies (

companyId VARCHAR(20) NOT NULL,

CONSTRAINT companyId_pk PRIMARY KEY (companyId)

);

CREATE TABLE Persons (

personId VARCHAR(20) NOT NULL,

companyId VARCHAR(20),

CONSTRAINT workFor_fk FOREIGN KEY (companyId)

REFERENCES Companies (companyId)

);

Note that the referential constraint in Matisse is not provided to define a
relationship between classes, but to make it possible to run the SQL DDL
statements written for relational database products.

ALTER

Syntax ALTER {CLASS | TABLE} [IF [NOT] EXISTS [schema_object]]
class

 DROP { ATTRIBUTE attribute

| REFERENCES relationship

| {INHERIT | UNDER} <superclass>

 }
Defining a Schema 123

ALTER {CLASS | TABLE} class

 ADD { ATTRIBUTE attribute attribute_type

 [DEFAULT literal] [NOT NULL]

 | RELATIONSHIP relationship
[[READONLY] REFERENCES [LIST | SET]]

 (succ_class [, ...])

 [CARDINALITY (min, max)]

 [INVERSE inv_class.inverse_relationship]

 | {INHERIT | UNDER} <superclass>

 }

ALTER {CLASS | TABLE} class

 ALTER { ATTRIBUTE attribute attribute_type

 [DEFAULT literal] [NOT NULL]

 | RELATIONSHIP relationship
[[READONLY] REFERENCES [LIST | SET]]

 (succ_class [, ...])

 [CARDINALITY (min, max)]

 [INVERSE inv_class.inverse_relationship]

 }

ALTER {CLASS | TABLE} class

 RENAME { TO new_class

| ATTRIBUTE attribute TO new_attribute

 | RELATIONSHIP relationship
}

schema_object ::=

 SCHEMA_OBJECT(NAMESPACE,[<ns path name>.]<ns name>)

| SCHEMA_OBJECT(CLASS,[<ns path name>.]<class name>)

| SCHEMA_OBJECT(ATTRIBUTE,[<ns path name>.]<cls name>.<att
name>)

| SCHEMA_OBJECT(RELATIONSHIP,[<ns path name>.]<cls
name>.<rel name>)

| SCHEMA_OBJECT(METHOD,[<ns path name>.]<cls name>.<mth
name>)

| SCHEMA_OBJECT(INDEX,[<ns path name>.]<index name>)

| SCHEMA_OBJECT(ENTRY_POINT DICTIONARY,[<ns path
name>.]<entry point name>)

attribute_type: See CREATE, on page 117.
literal: See section 2.1, What Is a Constant?.
succ_class: Class as a successor type for relationship.
inv_class: Class where inverse_relationship is defined.

Drop Properties To drop an attribute, relationship, or superclass in a class, you can use ALTER
CLASS DROP statement. For example, the following statement drops the
synopsis attribute from the movie class:
124 Matisse SQL Programmer’s Guide

ALTER CLASS movie DROP ATTRIBUTE synopsis;

Add Properties To add a new attribute, relationship, or superclass in a class, you can use ALTER
CLASS ADD statement. For example, the following statement adds a new
attribute releasedDate to the movie class:

ALTER CLASS movie

ADD ATTRIBUTE releasedDate DATE;

The following example adds a new relationship, starring, to the movie class:

ALTER CLASS movie

ADD RELATIONSHIP starring REFERENCES (artist)

INVERSE artist.biography;

The following example adds a new superclass, artist, to the movieDirector
class:

ALTER CLASS movieDirector

ADD INHERIT artist;

Modify Properties To modify an existing attribute or relationship in a class, you can use ALTER
CLASS ALTER statement. For example, the following statement modifies the
category attribute in the movie class so that every movie object must have
some category name:

ALTER CLASS movie

ALTER ATTRIBUTE category STRING NOT NULL;

The following example modifies the starring relationship defined above so
that it can have 10 starrings at most:

ALTER CLASS movie

ALTER RELATIONSHIP starring REFERENCES (artist)

CARDINALITY (0, 10)

INVERSE artist.biography;

Rename Properties To rename an existing class or an existing attribute or relationship in a class,
you can use ALTER CLASS RENAME statement. For example, the following
statement modifies the movie class name:

ALTER CLASS movie

RENAME TO movies;

The following example renames the category attribute to categories:

ALTER CLASS movie

RENAME ATTRIBUTE category TO categories;
Defining a Schema 125

DROP

Syntax DROP {CLASS | TABLE} [IF [NOT] EXISTS [schema_object]] class

schema_object ::=

 SCHEMA_OBJECT(NAMESPACE,[<ns path name>.]<ns name>)

| SCHEMA_OBJECT(CLASS,[<ns path name>.]<class name>)

| SCHEMA_OBJECT(ATTRIBUTE,[<ns path name>.]<cls name>.<att
name>)

| SCHEMA_OBJECT(RELATIONSHIP,[<ns path name>.]<cls
name>.<rel name>)

| SCHEMA_OBJECT(METHOD,[<ns path name>.]<cls name>.<mth
name>)

| SCHEMA_OBJECT(INDEX,[<ns path name>.]<index name>)

| SCHEMA_OBJECT(ENTRY_POINT DICTIONARY,[<ns path
name>.]<entry point name>)

Dropping Class To remove a class from the database, you can use the DROP CLASS statement.
The following statement removes the movie class:

DROP CLASS IF EXISTS movie;

Note that a DROP CLASS statement removes the attributes and relationships
defined in the class unless they are used by other classes.

11.3 Indexes
Matisse provides a conventional indexing mechanism, which allows you to
index objects of a class using up to four attributes. You can look up objects by
value intervals. A Matisse index can be created or deleted at any time without
interrupting concurrent operations.

CREATE

Syntax CREATE [UNIQUE] INDEX [IF [NOT] EXISTS [schema_object]]
index ON class (

attribute [ASC | DESC]

[, ...]

)

schema_object ::=

 SCHEMA_OBJECT(NAMESPACE,[<ns path name>.]<ns name>)

| SCHEMA_OBJECT(CLASS,[<ns path name>.]<class name>)
126 Matisse SQL Programmer’s Guide

| SCHEMA_OBJECT(ATTRIBUTE,[<ns path name>.]<cls name>.<att
name>)

| SCHEMA_OBJECT(RELATIONSHIP,[<ns path name>.]<cls
name>.<rel name>)

| SCHEMA_OBJECT(METHOD,[<ns path name>.]<cls name>.<mth
name>)

| SCHEMA_OBJECT(INDEX,[<ns path name>.]<index name>)

| SCHEMA_OBJECT(ENTRY_POINT DICTIONARY,[<ns path
name>.]<entry point name>)

Criteria An index can have four attributes as its criteria at most. They must be defined
in the class on which you are going to create the index. Each criterion attribute
may specify a direction, ascending or descending, in which objects are to be
indexed. This is optional and the default direction is ascending.

The total size occupied by all the attributes to be indexed must not exceed 256
bytes.

If the optional UNIQUE keyword is specified, each entry in the index needs to
be unique, allowing them to be used as primary keys. By default, an index is
defined as non-unique.

The following example shows how to create an index on the movie class using
the two attributes title and runningTime:

CREATE CLASS movie (

title VARCHAR(150) NOT NULL,

runningTime INTEGER NOT NULL

);

CREATE INDEX movieIndex ON movie (

title ASC,

runningTime ASC

);

DROP

Syntax DROP INDEX [IF [NOT] EXISTS [schema_object]] index

schema_object ::=

 SCHEMA_OBJECT(NAMESPACE,[<ns path name>.]<ns name>)

| SCHEMA_OBJECT(CLASS,[<ns path name>.]<class name>)

| SCHEMA_OBJECT(ATTRIBUTE,[<ns path name>.]<cls name>.<att
name>)

| SCHEMA_OBJECT(RELATIONSHIP,[<ns path name>.]<cls
name>.<rel name>)

| SCHEMA_OBJECT(METHOD,[<ns path name>.]<cls name>.<mth
name>)
Defining a Schema 127

| SCHEMA_OBJECT(INDEX,[<ns path name>.]<index name>)

| SCHEMA_OBJECT(ENTRY_POINT DICTIONARY,[<ns path
name>.]<entry point name>)

Dropping Index To remove an index, you can use DROP INDEX statement. The following
statement removes the index movieIndex:

DROP INDEX IF EXISTS movieIndex;

11.4 Entry Point Dictionaries
Matisse provides another indexing mechanism called entry point dictionary. An
entry point dictionary indexes objects by keywords, also called entry points.
You can then retrieve the objects via their entry points.

CREATE

Syntax CREATE [UNIQUE] ENTRY_POINT DICTIONARY [IF [NOT] EXISTS
[schema_object]]

entry_point_dictionary_name
ON class (attribute)

[CASE SENSITIVE]
[MAKE_ENTRY make_entry_function]

schema_object ::=

 SCHEMA_OBJECT(NAMESPACE,[<ns path name>.]<ns name>)

| SCHEMA_OBJECT(CLASS,[<ns path name>.]<class name>)

| SCHEMA_OBJECT(ATTRIBUTE,[<ns path name>.]<cls name>.<att
name>)

| SCHEMA_OBJECT(RELATIONSHIP,[<ns path name>.]<cls
name>.<rel name>)

| SCHEMA_OBJECT(METHOD,[<ns path name>.]<cls name>.<mth
name>)

| SCHEMA_OBJECT(INDEX,[<ns path name>.]<index name>)

| SCHEMA_OBJECT(ENTRY_POINT DICTIONARY,[<ns path
name>.]<entry point name>)

Make-Entry
Function

An entry-point dictionary is defined on an attribute with an entry-point
function. An entry-point function generates an entry-point string for an object,
which is used to index the object. The default value for
make_entry_function is "make-entry". The alternative value is "make-
full-text-entry", which generates entry-point strings for every word
contained in a character string attribute.

If the optional CASE SENSITIVE is specified, entry point dictionary lookups
are case sensitive. By default, the lookups are case insensitive.
128 Matisse SQL Programmer’s Guide

If the optional UNIQUE keyword is specified, each entry in the entry-point
dictionary needs to be unique. By default, an entry-point dictionary is defined
as non-unique

The following example defines an entry-point dictionary titleDict on the
title attribute with the make-full-text-entry make-entry function:

CREATE ENTRY_POINT DICTIONARY titleDict ON movie(title)

MAKE_ENTRY "make-full-text-entry";

Note that an entry-point function can generate several entry-point strings for an
object. For more details about entry point dictionary, please refer to the Getting
Started with Matisse.

DROP

Syntax DROP ENTRY_POINT DICTIONARY [IF [NOT] EXISTS
[schema_object]] entry_point_dictionary_name

schema_object ::=

 SCHEMA_OBJECT(NAMESPACE,[<ns path name>.]<ns name>)

| SCHEMA_OBJECT(CLASS,[<ns path name>.]<class name>)

| SCHEMA_OBJECT(ATTRIBUTE,[<ns path name>.]<cls name>.<att
name>)

| SCHEMA_OBJECT(RELATIONSHIP,[<ns path name>.]<cls
name>.<rel name>)

| SCHEMA_OBJECT(METHOD,[<ns path name>.]<cls name>.<mth
name>)

| SCHEMA_OBJECT(INDEX,[<ns path name>.]<index name>)

| SCHEMA_OBJECT(ENTRY_POINT DICTIONARY,[<ns path
name>.]<entry point name>)

Removing Entry
Point Dictionary

To remove an entry point dictionary, you can use the DROP ENTRY_POINT
DICTIONARY statement. The following example removes the entry point
dictionary titleDict defined for the title attribute in the movie class:

DROP ENTRY_POINT DICTIONARY titleDict;

11.5 Methods
Matisse supports SQL Methods, as defined in the SQL-99 standard, enabling
you to define and store programs written in SQL. This provides you a full
fledged object-oriented programming capability in the database server, thus
giving you faster execution, better reuse of code and maintenance.
Defining a Schema 129

CREATE

Syntax CREATE [INSTANCE | STATIC] METHOD [IF [NOT] EXISTS
[schema_object]] method_name (<parameter_declaration [,
...]>)
RETURNS <data_type>
FOR class_name
BEGIN

<statement>;
[...]

END

schema_object ::=

 SCHEMA_OBJECT(NAMESPACE,[<ns path name>.]<ns name>)

| SCHEMA_OBJECT(CLASS,[<ns path name>.]<class name>)

| SCHEMA_OBJECT(ATTRIBUTE,[<ns path name>.]<cls name>.<att
name>)

| SCHEMA_OBJECT(RELATIONSHIP,[<ns path name>.]<cls
name>.<rel name>)

| SCHEMA_OBJECT(METHOD,[<ns path name>.]<cls name>.<mth
name>)

| SCHEMA_OBJECT(INDEX,[<ns path name>.]<index name>)

| SCHEMA_OBJECT(ENTRY_POINT DICTIONARY,[<ns path
name>.]<entry point name>)

<parameter_declaration> ::=
[IN] parameter_name <data_type>

<data_type> ::=
<attribute_type> |
<object_type>

Creating a New
Method

This DDL statement creates a new method, and stores it in the database as an
instance of the meta-schema class MtMethod.

In this release of Matisse, <parameter_declaration> supports only input
parameter, specified by the IN keyword. The other two types, OUT (output
parameter) and INOUT (both for input and output), will be supported in a next
release.

The data a method can return is either of attribute type, for example INTEGER
or DATE, or of object type such as class Movie, or of object list type such as
class Movie selection, or of type table. If a method does not return anything,
its return type is NULL.

Static Method CREATE STATIC METHOD statement creates a static method, which belongs to a
class specified after FOR and does not operate on each instance of a class, but
can be used with CALL statement.

For example, a method returning an INTEGER:
130 Matisse SQL Programmer’s Guide

CREATE STATIC METHOD count_movie(a_pattern STRING)
RETURNS INTEGER
FOR movie
BEGIN

DECLARE cnt INTEGER;
SELECT COUNT(*) INTO cnt FROM movie
WHERE title LIKE a_pattern;
RETURN cnt;

END;

CALL movie::count_movie ('R%');

For example, a method returning an object selection:

CREATE STATIC METHOD listPresidentsBetween(startYear INT,
endYear INT)

 RETURNS SELECTION(Person)

 FOR Presidency

 BEGIN

 DECLARE sel SELECTION(Person);

 SELECT REF(p) FROM Person p

 WHERE p.IsInChargeOf.EndingYear >= startYear

 AND p.IsInChargeOf.StartingYear <= endYear

 INTO sel;

 RETURN sel;

 END;

For example, a method returning a table containing scalar values:

CREATE STATIC METHOD viewPresidentsBetween(startYear INT,
endYear INT)

 RETURNS TABLE(firstName VARCHAR(32), lastName
VARCHAR(32), startingYear INT, endingYear INT)

 FOR Presidency

 BEGIN

 SELECT p.FirstName, p.LastName,
p.IsInChargeOf.StartingYear, p.IsInChargeOf.EndingYear
FROM Person p

 WHERE p.IsInChargeOf.EndingYear >= startYear

 AND p.IsInChargeOf.StartingYear <= endYear;

 END;

For example, a method returning a table containing objects:

CREATE STATIC METHOD LocateEmployees(aCity String,
aMinSalary INT, aMaxSalary INT)

RETURNS TABLE(city STRING, department STRING, emp Employee)

FOR Employee
Defining a Schema 131

BEGIN

SELECT FILTERED

 e.Address.City,

 e.Department.DepartmentName,

 Ref(e)

FROM

 Employee e

WHERE

 e.Address.City = aCity

 AND e.Salary between aMinSalary and aMaxSalary

ORDER BY

 e.Department.DepartmentName,

 e.Salary;

END;

Updating a Method Use CREATE METHOD statement to update an existing method. The statement
updates the definition of a method, if the specified method already exists in the
database.

NOTE: Execute ‘COMPILE ALL’ after any changes to the database
schema including methods, so that all the methods are valid with
the latest schema.

DROP

Syntax DROP METHOD [IF [NOT] EXISTS [schema_object]] method_name
FOR class_name

schema_object ::=

 SCHEMA_OBJECT(NAMESPACE,[<ns path name>.]<ns name>)

| SCHEMA_OBJECT(CLASS,[<ns path name>.]<class name>)

| SCHEMA_OBJECT(ATTRIBUTE,[<ns path name>.]<cls name>.<att
name>)

| SCHEMA_OBJECT(RELATIONSHIP,[<ns path name>.]<cls
name>.<rel name>)

| SCHEMA_OBJECT(METHOD,[<ns path name>.]<cls name>.<mth
name>)

| SCHEMA_OBJECT(INDEX,[<ns path name>.]<index name>)

| SCHEMA_OBJECT(ENTRY_POINT DICTIONARY,[<ns path
name>.]<entry point name>)

Removing Method A DROP METHOD statement removes a method defined for class_name from
the database. For example:

DROP METHOD IF EXISTS count_movie FOR movie;
132 Matisse SQL Programmer’s Guide

COMPILE

Syntax COMPILE METHOD method_name FOR class_name;

COMPILE ALL;

Recompile Methods When you create new methods or update methods using CREATE METHOD
statement, the methods are compiled and stored in the database.

However, as you update the database schema, for example removing an
attribute, adding a new class, or updating methods, some methods could
become inconsistent with the schema, since Matisse does not recompile all the
methods automatically after any changes of schema. You need to run
COMPILE statement to make methods consistent with schema before executing
methods.

The COMPILE METHOD statement compiles a specific method, while the
COMPILE ALL statement compiles all the methods stored in the database. It’s
safe to use COMPILE ALL when you update the database schema.
Defining a Schema 133

12 Manipulating Data

This section explains how to perform the following functions with SQL:

Insert new objects into a database

Update attributes or relationships of objects

Delete some objects

These statements need to be executed within a transaction, not a version access.

12.1 Inserting Data

INSERT
An INSERT statement creates a new object of a given class, and sets its attribute
values and relationship successors.

Syntax INSERT INTO class

[(properties_list)]

VALUES (property_values_list)

[returning_clause]

properties_list

::= attribute_or_relationship [, ...]

property_values_list

::= expression [, ...]

returning_clause

::= RETURNING [REF(class)] INTO a_selection

Attributes You can set a literal constant as a new value for an attribute, For example, the
following statement creates a new instance of the artist class:

INSERT INTO artist

(lastName, firstName)

VALUES ('Roberts', 'Julia');

The next example creates an instance of the boxOffice class:

INSERT INTO boxOffice

(week, topReceipts)

VALUES (DATE '2001-01-29',
LIST(NUMERIC(10, 2))(34.5, 20.0, 8.9, 3.3, 2.1));
134 Matisse SQL Programmer’s Guide

In this example, the new boxOffice object will have a default value of 0 for
the attribute totalReceipts, since its value is not provided in the statement,
and the attribute totalReceipts is defined with this default value. If the
attribute does not have a default value and it allows a NULL value, then the
attribute value for the object remains unspecified.

Relationships You can set a list of objects for a relationship in an INSERT statement. The
following example creates a movie object for the movie Erin Brockovich with
Julia Roberts starring.

SELECT REF(a) FROM artist a

WHERE a.lastName = 'Roberts' and a.firstName = 'Julia'

INTO anActress;

INSERT INTO movie

(title, category, rating, ... , starring)

VALUES ('Erin Brockovich', 'Drama', 'R', ..., anActress);

As a value for a relationship, you can use a selection, the selection constructor
SELECTION, or set operations on selections as shown in the previous selection
Updating Data.

Returning clause An INSERT statement with a returning clause retrieves the object created and
stores it in a selection. This selection can then be used in other SQL statements
until it is freed.

The following example creates an artist object and store it in a selection,
then creates a movie object using the selection:

INSERT INTO artist (firstName, lastName)

 VALUES ('Tom', 'Cruise')

 RETURNING REF(artist) INTO aSelection;

INSERT INTO movie (title, starring)

 VALUES ('Minority Report', aSelection);

12.2 Updating Data

UPDATE
You can update objects with the UPDATE command. The command updates
attribute values or relationship successors of the objects that qualify the
predicate of an SQL statement. The command returns the number of objects
updated.

Syntax UPDATE class SET

attribute = { expression | DEFAULT | NULL } | [, ...]
Manipulating Data 135

relationship = expression [, ...]

[WHERE search_condition]

In this syntax, attribute is an attribute name, relationship is a
relationship name, expression is a value or an object selection to be set, and
search_condition is a predicate to select objects.

Attributes As a new value for an attribute, you can set a literal constant. For example, the
following statement updates the rank of the movie Thirteen Days for a week:

UPDATE movie SET rankForWeek = 5

WHERE title = 'Thirteen Days';

You can also set an attribute to its default value. For example, the following
statement updates the movie weekly ranking to its default value (i.e. no rank):

UPDATE movie SET rankForWeek = DEFAULT

WHERE rankForWeek IS NOT DEFAULT;

Relationships You can add, remove, or replace successor objects through a relationship using
the UPDATE statement. There are several ways to manipulate successor objects.

1. Using a selection

A selection is a set of objects created by a SELECT INTO query. If you
create a selection of objects using the INTO clause, you can then use it to set
successor objects for a relationship. In the following statements, the first
one selects the top 10 movies of a week and saves the result into a selection.
The second statement then assigns the selection to the topTitles
relationship in a boxOffice object.

SELECT REF(m) FROM movie m

WHERE m.rankForWeek >= 1 AND m.rankForWeek <= 10

ORDER BY m.rankForWeek

INTO top10Titles;

UPDATE boxOffice

SET topTitles = top10Titles

WHERE week = DATE '2001-01-22';

2. Using the selection constructor SELECTION

The SELECTION keyword constructs a new selection using relationships,
other selections or OIDs (Object Identifiers).

The following statements show how to append into the topTitles
relationship other movies whose ranks are between 11 and 20.

SELECT REF(m) FROM movie m

WHERE m.rankForWeek >= 11 AND m.rankForWeek <= 20

ORDER BY m.rankForWeek

INTO next10Titles;

UPDATE boxOffice

SET topTitles = SELECTION(topTitles, next10Titles)
136 Matisse SQL Programmer’s Guide

WHERE week = DATE '2001-01-22';

The SELECTION operation can take more than two arguments, which are
either relationship or selection.

SELECT REF(m) FROM movie m

WHERE m.rankForWeek >= 21 AND m.rankForWeek <= 30

ORDER BY m.rankForWeek

INTO more10Titles;

UPDATE boxOffice

SET topTitles =

SELECTION(top10Titles, next10Titles, more10Titles)

WHERE week = DATE '2001-01-22';

The SELECTION operation can take OIDs as arguments. OIDs can be either
decimal or hexadecimal (prefixed by 0x). If you know the OIDs for the top
five movie titles, you may write the following statement to update the
topTitles relationship:

UPDATE boxOffice

SET topTitles =

SELECTION('1234', '1236', '1238', '0x4E6', '0x4E8')

WHERE week = DATE '2001-01-22';

3. Empty relationship

To remove all successor objects of a relationship, you can use the empty
selection SELECTION(). The following statement removes all successor
objects, if any, for the topTitles relationship:

UPDATE boxOffice

SET topTitles = SELECTION()

WHERE week = DATE '2001-01-29';

4. Set operations on selections

You can use set operations to set successor objects. Three kinds of set
operators for selections are provided: UNION, INTERSECT, and EXCEPT.
They take two operands, both of which are selections or another set
operation expression.

selection1 UNION selection2

The UNION operator returns a union of two selections: selection1 and
selection2. The order of objects is not preserved.

selection1 INTERSECT selection2

The INTERSECT operator returns an intersection of two selections:
selection1 and selection2. The order of objects is not preserved.

selection1 EXCEPT selection2

The EXCEPT operator returns a difference of two selection selection1 and
selection2, that is, all objects in selection1 except those in selection2.
The order of objects is preserved.

The following example shows how to filter selected movies by their ratings:
Manipulating Data 137

SELECT REF(m) FROM movie m

WHERE m.rating = 'G' OR m.rating = 'PG'

INTO kMovies;

UPDATE boxOffice

SET topTitlesForKids =

SELECTION(SELECTION(top10Titles, next10Titles)
INTERSECT kMovies)

WHERE week = DATE '2001-01-22';

The second statement above can also be stated as follows:

UPDATE boxOffice

SET topTitlesForKids =

SELECTION((top10Titles UNION next10Titles) INTERSECT
gMovies)

WHERE week = DATE '2001-01-22';

The following is another example filtering selected movies by their ratings.
It is excluding movies rated NC-17.

SELECT REF(m) FROM movie m

WHERE m.rating = 'NC-17'

INTO ncMovies;

UPDATE boxOffice

SET topTitles =

SELECTION(SELECTION(top10Titles, next10Titles) EXCEPT
ncMovies)

WHERE week = DATE '2001-01-22';

12.3 Deleting Data

DELETE
A DELETE statement deletes a set of objects that qualifies the statement’s where
clause. If the statement does not have a where clause, it deletes all the instances
of the class.

Syntax DELETE FROM class [WHERE search_condition]

Example The following example deletes all the boxOffice objects whose records are
older than Jan. 01, 1985.

DELETE FROM boxOffice

WHERE week < DATE '1985-01-01';
138 Matisse SQL Programmer’s Guide

12.4 Auto Increment Attribute
Each object in Matisse has a unique object identifier that can be accessed via
the OID attribute. If your application requires to define a primary key attribute
with an auto incremental value, you can rely on the Matisse OIDs which are
unique and incremental to build a unique and incremental key.

Example You can set the GUID attribute value based upon the object unique OID as
follows:

INSERT INTO movie (GUID, title)
VALUES(CAST(OID AS INT),'La Vie en Rose');
Manipulating Data 139

13 Stored Methods and Statement
Blocks

Matisse supports stored methods, which are like stored procedures for relational
database systems but provide an object-oriented programming environment
with inheritance and polymorphic behavior. Matisse stored methods are stored
and executed in the database server, and offer several advantages:

1. Performance. Methods are precompiled and stored in the server. They
execute much faster than compiling SQL statements upon each execution.
Methods usually contain several SQL statements and generate much less
network traffic compared to executing each SQL statement from the client
one by one.

2. Reusability. A stored method can be used by different client side
applications, ensuring that they use the same business logic, and reducing
the risk of application programming error.

3. Extensibility. When you extend the application by adding new subclasses,
these subclasses can reuse the methods defined in their superclasses, or
redefine them to implement the new behavior. This is also known as
polymorphism.

4. Maintainability. Well defined methods hide all the details of the data
structures. When updating the data structures or database schema, you can
minimize the changes to your application with the use of methods.

Matisse stored methods follow the syntax of SQL-99 PSM.

For information about creation, update, and deletion of methods, please refer to
11.5 Methods.

13.1 A Simple Example
The following example provides a brief overview of Matisse SQL methods.
First, we define a method for class Artist that returns the actor’s full name:

CREATE METHOD full_name()
RETURNS STRING
FOR Artist
BEGIN

RETURN CONCAT(firstName, CONCAT(' ', lastName));
END;

Then, we define another method for class MovieDirector with the same
name, overriding the method defined for Artist, since MovieDirector is
inheriting from Artist:
140 Matisse SQL Programmer’s Guide

CREATE METHOD full_name()
RETURNS STRING
FOR MovieDirector
BEGIN

-- Put the title 'Director' before the name, and use
-- only the initial letter for the first name.
DECLARE firstInitial STRING;
SET firstInitial = CONCAT(SUBSTR(firstName, 1, 1), '. ');
RETURN CONCAT ('Director ',

CONCAT(firstInitial, lastName));
END;

Now, execute a SELECT statement to check if there are actors or movie
directors who have more than 20 letters in the full name returned by the
full_name() method:

SELECT firstName, lastName FROM Artist a
WHERE LENGTH(a.full_name()) > 20;

firstName lastName
-------------------- --------------------
Steven Spielberg
1 objects selected

Note that the above SELECT query searches for both Artist instances and
MovieDirector instances, and it invokes both the full_name() method
which is defined for Artist instances and the full_name() method which is
defined for MovieDirector instances.

13.2 Method Invocation
A method can be called within a SELECT statement, another method, or almost
anywhere an expression is allowed. The basic form to invoke a method is:

object.method(<parameter list>)

Calling a
Method in
SELECT
Statement

In a SELECT statement, since an alias name for the class in FROM clause is
representing each object in the class, a method can be called as following:

SELECT d.full_name()
FROM MovieDirector d
WHERE LENGTH(d.full_name()) < 30;

Note that currently methods can be called only in the WHERE clause of
SELECT, UPDATE, or DELETE statements.

Calling a
Method in
Method Body

In a method body, there are several ways to invoke a method.

(1) Using FOR statement
Stored Methods and Statement Blocks 141

The FOR statement, explained later in this section, takes a loop variable of
object type, on which you can call a method. For example,

CREATE STATIC METHOD total_length()
RETURNS INTEGER
FOR Artist
BEGIN

DECLARE len INTEGER;
FOR obj AS SELECT REF(a) FROM Artist a DO
SET len = len + LENGTH(obj.full_name());

END FOR;
RETURN len;

END;

(2) Using SELF

The SELF keyword is a pseudo variable referring to the object on which the
method operates. You can invoke a method using SELF, for example,

CREATE METHOD full_name_length()
RETURNS INTEGER
FOR Artist
BEGIN

RETURN LENGTH(SELF.full_name());
END;

(3) Method Parameter or Relationship Successor Object

You can pass an object as a method parameter and invoke a method on the
object. For example,

CREATE METHOD aMethod1(anArtist Artist)
RETURNS INTEGER
FOR Movie
BEGIN

DECLARE len INTEGER;
SET len = anArtist.full_name_length();
...

END;

You can get a successor object from a relationship, and invoke a method on the
object. For example,

BEGIN
DECLARE aMovie Movie;
DECLARE star Artist;

-- Select a Movie object into a variable
SELECT REF(m) INTO aMovie FROM Movie m WHERE ...;

-- Get the first successor object from the Starring
relationship

SET star = aMovie.Starring(1);
142 Matisse SQL Programmer’s Guide

RETURN start.full_name();
END;

Calling a
Method with
LOOKUP

An instance method can be called using the CALL keyword. An example is
shown in the following section.

Syntax CALL LOOKUP(<class-name>,<oid>).<method-name>
([<parameter> [, ...]])

Example Call the instance method getSalaries() on the Employee instance
'0x1234', as a single statement:

CALL LOOKUP("Employee",'0x1234').getSalaries(2008);

This returns an integer value.

Calling a Static
Method

A static method can be called using the CALL keyword. Inside the WHERE-
clause of SELECT, UPDATE, or DELETE statement, it can be called without
using the CALL keyword. An example is shown in the following section.

Syntax CALL <class-name>::<method-name> ([<parameter> [, ...]])

Example Call the static method defined above:

CALL Artist::total_length();

This returns an integer value.

Static Method
and Query
Optimization

When a static method is used with a query statement, the static method will be
executed only once if the method has no correlated reference to the query
statement. For example, if we define a simple static method that returns the
average running time of all the movies for a given rating:

CREATE STATIC METHOD avg_run_time(aRate STRING)
RETURNS DOUBLE
FOR Movie
BEGIN

DECLARE avgtime DOUBLE;
SELECT AVG(runningTime) INTO avgtime FROM Movie
WHERE rating = aRate;
RETURN avgtime;

END;

Then, the next query selects movies rated as ‘PG-13’ and having more running
time than average running time for all the movies rated as ‘PG-13’:

SELECT *
FROM Movie
WHERE

rating = 'PG-13'
AND runningTime > Movie::avg_run_time('PG-13');
Stored Methods and Statement Blocks 143

For this query, the method avg_run_time does not need to be executed for each
Movie object, but it is sufficient to run it once. Matisse detects this situation,
and optimizes the query so that it executes the static method only once.

Calling a
Method in a
Superclass

When you need to call a method in a superclass from its subclass’s method, you
can use the generalized method invocation:

(<object expression> AS class_name).method(...)

A typical usage of the generalized method invocation is initialization of an
object. For example,

CREATE METHOD Initialize()
RETURNS NULL
FOR MovieDirector
BEGIN

-- Call the initialization method in its superclass
(SELF AS Artist).Initialize();
-- ... some other initialization here

END;

Calling a
Method
returning a Table

A method can return a table which contains objects. An example is shown in
the following section.

Syntax CALL <class-name>::<method-name> ([<parameter> [, ...]])

Example Call the static method defined in the method definition section 11.5 Methods :

CALL Employee::LocateEmployees('Lyon', 95000, 150000);

This returns a SQL projection which contains Employee objects.

city department emp

------------ ------------------------- ----------------

Lyon Customer Care 0x3f63 Manager

Lyon Finance 0x3322 Manager

Lyon Information Technology 0x5ad2 Employee

Lyon Sales 0x1b6f Employee

Lyon Sales 0x14c0 Employee

Lyon Sales 0x4642 Director

13.3 Update Object in a Method
In an instance method (i.e., in CREATE METHOD statement), you can use
UPDATE SELF statement to update attributes or relationships of the object on
which the method is called.
144 Matisse SQL Programmer’s Guide

For instance, the following method receives a string for movie rating as a
parameter, and checks if the rating string is valid. If it is valid, it execute an
UPDATE statement to update the Rating attribute:

CREATE METHOD UpdateRating(newRating STRING)
RETURNS NULL
FOR Movie
BEGIN

IF newRating IN ('G', 'PG', 'PG-13', 'R') THEN
UPDATE SELF SET Rating = newRating;

ELSE
...

END IF;
END;

Note that UPDATE SELF statement is not allowed in a static method (i.e.,
CREATE STATIC METHOD statement).

13.4 Control Statements
Control statements control the flow of the program, the declaration and
assignment of variables, and handles exceptions, which are allowed to be used
in a method body or a statement block. Control statements allow you to write a
program in a way writing programs in complete programming languages.

Matisse provides the following control statements:

IF

LOOP

REPEAT

WHILE

FOR

LEAVE

ITERATE

RETURN

SET assignment

SIGNAL

RESIGNAL

IF Statement
The IF statement evaluates a condition and selects a different execution path
depending on the result.
Stored Methods and Statement Blocks 145

Syntax IF <condition> THEN
<list of statements>

[ELSEIF <condition> THEN
<list of statements>]

[ELSE
<list of statements>]

END IF;

If <condition> evaluates to true, then the following <list of
statements> will be executed. Otherwise, it tries the next <condition>, and
if it is true, the following <list of statements> will be executed.

If no <condition> evaluates to true and ELSE clause is provided, <list of
statements> in ELSE clause is executed.

Example The following method returns the absolute value of an integer:

CREATE METHOD abs (arg INTEGER)
...
BEGIN

IF arg < 0 THEN
RETURN -arg;

ELSE
RETURN arg;

END IF;
END;

LOOP Statement
The LOOP statement repeats the execution of SQL statements. Since the LOOP
statement itself has no condition to terminate the loop, a statement like LEAVE,
RETURN, or SIGNAL is usually used to pass the flow of control outside of the
loop.

Syntax [<loop_label>:]
LOOP

<statement>;
[...]

END LOOP [<loop_label>];

If the beginning label is specified, the label can be used with a LEAVE or
ITERATE statement inside the LOOP statement. If the ending label is also
specified, it needs to match the beginning label.

Example The following example repeats the execution 100 times, then exits from the
loop using the LEAVE statement:

BEGIN
DECLARE cnt INTEGER DEFAULT 0;
the_loop:
LOOP
146 Matisse SQL Programmer’s Guide

... -- do something here
SET cnt = cnt + 1;
IF cnt = 100 THEN

LEAVE the_loop;
END IF;

END LOOP the_loop;
END;

REPEAT statement
The REPEAT statement repeats the statements until the specified condition
returns true.

Syntax [<label>:]
REPEAT

<statement>;
[...]

UNTIL <condition>
END REPEAT [<label>];

In each iteration of execution, <statement>s are executed first, then
<condition> is tested.

If the beginning label is specified, the label can be used with LEAVE or
ITERATE statement inside the LOOP statement. If the ending label is also
specified, it needs to match the beginning label.

Example The following example repeats the execution 100 times, then exits from the
loop:

BEGIN
DECLARE cnt INTEGER DEFAULT 0;
REPEAT
... -- do something here
SET cnt = cnt + 1;

UNTIL cnt = 100
END REPEAT;

END;

WHILE Statement
The WHILE statement repeats the execution of SQL statements while the
specified condition is true.

Syntax [<label>:]
WHILE <condition> DO
<statement>;
[...]
END WHILE [<label>];
Stored Methods and Statement Blocks 147

In each iteration of execution, <condition> is first tested, and <statement>s
are executed if <condition> is true.

If the beginning label is specified, the label can be used with a LEAVE or
ITERATE statement inside the LOOP statement. If the ending label is also
specified, it needs to match the beginning label.

Example The following example repeats the execution 100 times, then exits from the
loop:

BEGIN
DECLARE cnt INTEGER DEFAULT 0;
WHILE cnt < 100 DO
... -- do something here
SET cnt = cnt + 1;

END WHILE;
END;

FOR Statement
The FOR statement executes SQL statements for each object that qualified the
specified SELECT query.

Syntax [<label>:]
FOR <loop_variable> AS <select statement> DO

<statement>;
[...]

END FOR [<label>]

<loop_variable> is used to qualify the names in the Select-list of <select
statement> when they are used within the FOR body. And, <loop_variable>
represents an object that is selected by <select statement>. You can access the
selected object’s attribute or invoke a method using <loop_variable>.

If the beginning label is specified, the label can be used with a LEAVE or
ITERATE statement inside the LOOP statement. If the ending label is also
specified, it needs to match the beginning label.

Example The following example counts the total length of the full name of all the artists
with some threshold condition:

BEGIN
DECLARE total INTEGER DEFAULT 0;
DECLARE fname STRING;

for_loop:
FOR obj AS SELECT REF(a) FROM Artist a DO
SET fname = obj.full_name();
IF LENGTH(fname) > 20 THEN

SET total = total + 20;
148 Matisse SQL Programmer’s Guide

ELSE
SET total = total + LENGTH(fname);

END IF;
END FOR;
RETURN total;

END;

The next example does the same thing using attribute access on the loop
variable instead of method invocation full_name() above:

BEGIN
DECLARE total INTEGER DEFAULT 0;
DECLARE fname STRING;

FOR obj AS SELECT REF(a) FROM Artist a DO
SET fname = CONCAT(obj.firstName, obj.lastName);
IF LENGTH(fname) > 20 THEN
SET total = total + 20;

ELSE
SET total = total + LENGTH(fname);

END IF;
END FOR;
RETURN total;

END;

The next example selects all the distinct ratings for each movie category, and
returns it as a list:

BEGIN
DECLARE ratings LIST(STRING) DEFAULT LIST(STRING)();

FOR val AS SELECT DISTINCT category, rating FROM movie DO
ADD (ratings, CONCAT(val.category, val.rating));

END FOR;

RETURN ratings;
END;

Note that these columns in the Select-list need to be qualified in the DO body
using the loop variable val.

LEAVE Statement
The LEAVE statement passes the control flow out of a loop or a statement
block.

Syntax LEAVE label;

Use the label specified by FOR, LOOP, REPEAT, WHILE statement, or
statement block
Stored Methods and Statement Blocks 149

Example In the following example, the LEAVE statements moves the execution flow out
of the outer loop directly from the inner loop:

BEGIN
DECLARE cnt INTEGER DEFAULT 0;
outer_loop:
WHILE cnt < 100 DO
... -- do something
inner_loop:
WHILE cnt < 200 DO

... -- do something
SET cnt = cnt + 1;
IF cnt >= 100 THEN

LEAVE outer_loop; -- the control goes to line (A)
END IF;

END WHILE;
END WHILE;
... -- line (A)

END;

ITERATE Statement
The ITERATE statement moves the execution flow back to the beginning of the
loop and proceeds with the next iteration of the loop.

Syntax ITERATE label;

Use the label specified by FOR, LOOP, REPEAT, or WHILE statement.

Example The following example uses the ITERATE statement to skip some cases in the
iteration of the loop:

BEGIN
DECLARE cnt, i INTEGER DEFAULT 0;
SET i = 1;
while_loop:
WHILE cnt < 100 DO
IF cnt = 50 THEN

SET cnt = 90;
ITERATE while_loop;

END IF;
... -- do something with ‘i’
SET cnt = cnt + i;

END WHILE;
END;
150 Matisse SQL Programmer’s Guide

RETURN Statement
The RETURN statement returns the result of the method and exits from the
method.

Syntax RETURN [<expression> | NULL];

If the keyword RETURN is followed by nothing, it is equivalent to returning
NULL.

If the RETURN statement is executed within a loop statement, e.g., WHILE or
FOR, then the loop statement is terminated as well.

Example The following statement block returns NULL if it finds an artist object without
any biography:

BEGIN
for_loop:
FOR obj AS SELECT REF(a) FROM Artist a DO
IF obj.biography IS NULL THEN
RETURN NULL;

END IF;
... -- do something else here

END FOR;
END;

SET Assignment Statement
The assignment statement assigns a value to a variable.

Syntax SET <variable> = <source expression> | NULL;

Type Compatibility The data types of both <source expression> and the target <variable>
need to be compatible. The data type compatibility for assignment is shown
below. All the types listed in the same bullet are compatible with each other
except list types.

Numbers: BYTE, SHORT, INTEGER, LONG, FLOAT, DOUBLE, and
NUMBER.

STRING and TEXT

CHARACTER

TIMESTAMP

DATE

INTERVAL

Multimedia types: AUDIO, IMAGE, VIDEO, and BYTES
Stored Methods and Statement Blocks 151

List type: A list type is compatible only with exactly the same type. For
example, LIST(INTEGER) is compatible with LIST(INTEGER) but not
compatible with LIST(LONG).

Object: The target object type needs to be conformant with the source
object, i.e., the class of the source object is the same or subclass of the
target object’s class.

Pass by Reference When assigning a value of string, list type (e.g., LIST(INTEGER)), or
multimedia types (e.g., BYTES or IMAGE), the assignment is done by passing
its reference, not by copying its content.

Numeric Overflow When assigning a number, an overflow exception could happen because of the
lack of precision in the target type. For example, if you try to assign 1000000 to
a variable of SHORT, Matisse will raise the numeric overflow exception.

SIGNAL Statement
The SIGNAL statement clears the diagnostic records and raises an exception,
along with an optional text message. For more information about handling
exceptions, see 13.7 Exception Handling.

Syntax SIGNAL <exception_name> [SET MESSAGE_TEXT = <text
message>];

Example See the example in the RESIGNAL statement below.

RESIGNAL Statement
The RESIGNAL statement resignals the exception along with an optional text
message. It does not clear the diagnostic records, but raises the same exception
again. The statement is used only within an exception handler.

Syntax RESIGNAL;

Example In the following example, it raises the out_of_balance exception, which will
be caught by a handler. The handler will do some processing before reraising
the same exception and exiting from the statement block.

BEGIN
DECLARE out_of_balance CONDITION FOR CODE 2005;
DECLARE EXIT HANDLER FOR out_of_balance
SET ...;

BEGIN -- sub-block
DECLARE CONTINUTE HANDLER FOR out_of_balance

BEGIN
... -- do something
152 Matisse SQL Programmer’s Guide

RESIGNAL; -- reraise the same exception
END;

...
IF ... THEN

SIGNAL out_of_balance; -- raise an exception
END IF;

END;
END;

13.5 Selections in the Server
A selection is a collection of objects, which can be generated as the result of a
SELECT statement execution or by reading successor objects of a relationship
in an object in the server. For instance,

BEGIN
DECLARE movies SELECTION(Movie);
SELECT REF(m) FROM Movies m ... INTO movies;
... -- manipulation of ‘movies’

END;

The next example copies Starring successors of a Movie object into a
selection:

BEGIN
DECLARE aMovie Movie;
DECLARE actors SELECTION(Artist);

SELECT REF(m) INTO aMovie FROM Movie m WHERE ...;
SET actors = aMovie.Starring;
... -- manipulation of ‘actors’

END;

Construct for
Selections

There are several ways to construct selections that can be used in PSM. The
following example shows two ways to assign an empty selection:

BEGIN
DECLARE movies SELECTION(Movie) DEFAULT SELECTION();
RETURN movies;

END;

BEGIN
DECLARE actors SELECTION(Artist);
SET actors = SELECTION();

RETURN actors;
END;

The example below creates a selection using multiple selections
Stored Methods and Statement Blocks 153

BEGIN

DECLARE res SELECTION(movie);

DECLARE someTitles SELECTION(movie);

DECLARE moreTitles SELECTION(movie);

SELECT REF(m) FROM movie m WHERE ... INTO someTitles;

SELECT REF(m) FROM movie m WHERE ... INTO moreTitles;

SET res = SELECTION(someTitles UNION moreTitles);

-- another way

SET res = SELECTION(someTitles, moreTitles);

-- a more complex one

SET res = SELECTION((someTitles UNION moreTitles)

INTERSECT otherTitles);

-- another one

SET res = SELECTION(someTitles EXCEPT moreTitles);

RETURN res;

END;

This example creates a selection using multiple objects:

BEGIN

DECLARE res SELECTION(movie);

DECLARE mObj1, mObj2 movie;

SELECT REF(m) INTO mObj1 FROM movie m WHERE ...;

SELECT REF(m) INTO mObj2 FROM movie m WHERE ...;

SET res = SELECTION(mObj1, mObj2);

RETURN res;

END;

Methods for
Selections

There are several system-defined methods for selections that can be used in
PSM.

ADD

ADD_ALL

CLEAR

CONTAINS

COUNT

GET

INSERT

REMOVE

REMOVE_AT
154 Matisse SQL Programmer’s Guide

REMOVE_DUPLICATES

SET

ADD

Syntax ADD(object)

Purpose Add an object to the end of the selection.

Arguments object

The object to be added. If object is NULL, MATISSE_NULL_OBJECT error
is returned.

Example CREATE METHOD AddStarring(anArtist Artist)
RETURNS NULL
FOR Movie
BEGIN

DECLARE s1 SELECTION(Artist);
SET s1 = SELF.Starring;
s1.ADD(anArtist);
UPDATE SELF SET Starring = s1;

END;

ADD_ALL

Syntax ADD_ALL(selection)

Purpose Add objects in selection to the end of the selection.

Arguments selection

The objects to be added. If selection is NULL, MATISSE_NULL_OBJECT
error is returned.

Example CREATE METHOD AddStarring(artists SELECTION(Artist))
RETURNS NULL
FOR Movie
BEGIN

DECLARE s1 SELECTION(Artist);
SET s1 = SELF.Starring;
s1.ADD_ALL(artists);
UPDATE SELF SET Starring = s1;

END;
Stored Methods and Statement Blocks 155

CLEAR

Syntax CLEAR()

Purpose Remove all of the elements in the selection.

CONTAINS

Syntax CONTAINS(object)

Purpose Determines whether object is contained in the selection

Arguments object

The object to locate in the selection. If object is NULL, the method returns
false.

Example CREATE METHOD HasActor(anArtist Artist)
RETURN BOOLEAN
FOR Movie
BEGIN

DECLARE strr SELECTION(Artist);
SET strr = SELF.Starring;
RETURN strr.CONTAINS(anArtist);

END;

COUNT

Syntax COUNT()

Purpose Return the number of objects in the selection.

Example BEGIN
DECLARE movies SELECTION(Movie);
DECLARE cnt INTEGER;
SELECT REF(m) FROM Movies m WHERE ... INTO movies;
SET cnt = movies.COUNT();

GET

Syntax GET(index)

Purpose Return the object at the specified position in this selection.
156 Matisse SQL Programmer’s Guide

Arguments index

Index of object to be returned. If index is NULL, the method returns NULL. If
index is out of range, the method returns MATISSE_ARG_OUTOFBOUNDS
error. The index of the first object in a selection is 1.

Example BEGIN
DECLARE movies SELECTION(Movie);
DECLARE aMovie Movie;
DECLARE i INTEGER;

SELECT REF(m) FROM Movie WHERE ... INTO movies;
SET i = 1;
WHILE i <= movies.COUNT() DO
SET aMovie = movies.GET(i)
...
SET i = i + 1;

END WHILE;
END;

INSERT

Syntax INSERT(index, object)

Purpose Insert object at the specified position index in this selection.

Arguments index

Index at which the specified object is to be inserted. If index is out of range, the
method returns MATISSE_ARG_OUTOFBOUND error. The index of the first
object in a selection is 1.

object

Object to be inserted. If object is NULL, the method returns
MATISSE_NULL_OBJECT error.

Example CREATE METHOD AddActor(i INTEGER, anArtist Artist)
RETURNS NULL
FOR Movie
BEGIN

DECLARE strr SELECTION(Artist);
SET strr = SELF.Starring;
strr.INSERT(i, anArtist);
...

END;
Stored Methods and Statement Blocks 157

REMOVE

Syntax REMOVE(object)

Purpose Remove the first occurrence of the specified object in this selection. The
method returns true if the specified object is found. Otherwise, it returns false.

Arguments object

Object to be removed. If object is NULL, the method returns false.

Example CREATE METHOD RemoveActor (anArtist Artist)
RETURNS BOOLEAN
FOR MOvie
BEGIN

DECLARE strr SELECTION(Artist);
DECLARE found BOOLEAN;

SET strr = SELF.Starring;
SET found = strr.REMOVE(anArtist);
...
RETURN found;

END;

REMOVE_AT

Syntax REMOVE_AT(index)

Purpose Remove the object at the specified position in this selection. The method
returns false if the specified position is out of range. Otherwise, it returns true.

Arguments index

The index of the object to be removed. If index is NULL, the method does not
remove any object and its return value is undetermined. The index of the first
object in a selection is 1.

Example CREATE METHOD RemoveActorAt (i INTEGER)
RETURNS NULL
FOR MOvie
BEGIN

DECLARE strr SELECTION(Artist);

SET strr = SELF.Starring;
strr.REMOVE_AT(i);
...

END;
158 Matisse SQL Programmer’s Guide

REMOVE_DUPLICATES

Syntax REMOVE_DUPLICATES()

Purpose Remove the duplicate objects in this selection.

Example BEGIN
DECLARE strr SELECTION(Artist);

strr.REMOVE_DIPLICATES();
...

END;

SET

Syntax SET(index, object)

Purpose Replace the object at the specified position in this selection with the specified
object.

Arguments index

The index of the object to replace. The index of the first object in a selection is
1.

object

Object to be stored at the specified position. If object is NULL, the method
returns MATISSE_NULL_OBJECT error.

Example BEGIN

DECLARE aMovie Movie;

DECLARE strr SELECTION(Artist);

DECLARE newActor Artist;

SELECT REF(m) INTO aMovie FROM Movie m WHERE ...;

SET strr = aMovie.Starring;

strr.SET(1, newActor);

END;

13.6 Statement Blocks
A statement block is a group of SQL statements between the keywords BEGIN
and END. Within a statement block, you can declare SQL variables and
exception handlers.
Stored Methods and Statement Blocks 159

Syntax [label:]
BEGIN

[<variable declaration> | <handler declaration>] [...]
<SQL statement> [...]

END [label];

<variable declaration> ::=
DECLARE <variable name> [, ...] <type>
[DEFAULT <literal constant>]

See Declaration of Handler for the definition of <handler
declaration>.

If label is specified, it can be used with the LEAVE statement to exit from the
statement block. If the optional ending label is specified, it needs to match the
beginning label.

Variable
Declaration

<variable declaration> defines local variables with names, a type, and an
optional default value.

All the variable names need to be unique within a statement block. When
statement blocks are nested, the inner block can see the variables declared in
the outer block. If a variable V1 has the same name with another one, say V2,
in outer statement block, V2 cannot be seen within the inner statement block.
For example, the next statement block returns 10:

BEGIN
DECLARE foo INTEGER;
SET foo = 10;
BEGIN
DECLARE foo INTEGER;
SET foo = 20; -- updating ‘foo’ in this block

END;
RETURN foo; -- returns 10, not 20

END;

All the available types for declaration are listed in CREATE.

All the variables are NULL until they are explicitly assigned a value, unless
they are declared with DEFAULT clause.

Direct Execution
of Statement
Block

A statement block can be directly executed from the client application or within
the mt_sql utility. The next example is executed in the mt_sql utility:

C:\>mt_sql -d exampledb@your_host

sql> BEGIN
2> DECLARE total NUMERIC(19, 2) DEFAULT 0.0;
3>
4> loop_label:
5> FOR obj AS SELECT REF(e) FROM Employee e
6> WHERE location = 'SF'
160 Matisse SQL Programmer’s Guide

7> DO
8> IF obj.expenses > 1000.0 THEN
9> -- max amount for each employee is 1000
10> SET total = total + 1000;
11> ELSE
12> SET total = total + obj.expenses;
13> END IF;
14> END FOR;
15>
16> RETURN total;
17> END;

10345.05

Returning
Objects from
Statement Block

A statement block can return a list of objects selected by a SELECT statement.

BEGIN
DECLARE avg_len DOUBLE;
DECLARE long_movies SELECTION(Movie);

SELECT AVG(runningTime) INTO avg_len FROM Movie;
SELECT REF(m) FROM Movie m
WHERE runningTime > avg_len
INTO long_movies;
-- get the selected objects into a selection

RETURN long_movies;
END;

If the example is executed in the mt_sql utility, the returned objects are saved in
a selection named ‘DefaultSelection’, so you can do:

sql> SELECT * FROM DefaultSelection;

Returning a
Table from
Statement Block

A statement block returns a table result from a SELECT statement if the last
instruction in the block is a SELECT statement.

BEGIN

SELECT
p.FirstName,
p.LastName,
p.IsInChargeOf.StartingYear,
p.IsInChargeOf.EndingYear

FROM Person p
WHERE
p.IsInChargeOf.EndingYear >= startYear

AND p.IsInChargeOf.StartingYear <= endYear;

END;
Stored Methods and Statement Blocks 161

13.7 Exception Handling
An exception handler specifies a set of statements to be executed when an
exception occurs in a method or a statement block.

Declaration of
Handler

To declare an exception handler, use the following form:

<handler declaration> ::=

DECLARE <handler type> HANDLER FOR <exception conditions>
<SQL statement>

<handler type> ::= CONTINUE | EXIT

Here is an example of CONTINUE handler, which sets a variable to -1 when the
division-by-zero exception happens:

BEGIN
DECLARE cnt INTEGER DEFAULT 0;
DECLARE CONTINUE HANDLER FOR DIVISION_BY_ZERO
SET cnt = -1;

FOR obj AS SELECT REF(e) FROM Employee e DO
-- division-by-zero exception may happen in the next line
IF (obj.salary/obj.workHour) > 200 THEN

SET cnt = cnt + 1;
END IF;

END FOR;

RETURN cnt;
END;

Note that more than one declaration cannot have the same exception condition.
For example, the following declarations are invalid:

-- sample of wrong code
BEGIN

DECLARE EXIT HANDLER FOR MTEXCEPTION
SET res = 0;

DECLARE EXIT HANDLER FOR MTEXCEPTION
SET another = 10;

...
END;

Each handler can contain up to 16 exception conditions.

Handler Types Matisse supports two types of handlers: CONTINUE and EXIT.

EXIT: After the handler is executed successfully, the control is returned to
the end of the statement block that declared the handler.
162 Matisse SQL Programmer’s Guide

CONTINUE: After the handler is executed successfully, the control is
returned to the SQL statement that follows the statement that raised the
exception. Note: If the statement that raised the exception is in a FOR, IF,
WHILE, LOOP, or REPEAT statement, the control goes to the statement
that follows END FOR, END IF, END WHILE, END LOOP, or END
REPEAT, unless the handler is defined inside these loop statements.

In the following example, if the division-by-zero error happens at line (A), then
the exception handler is executed and the control goes to line (B), i.e., exits
from the FOR loop.

BEGIN
DECLARE cnt INTEGER DEFAULT 0;
DECLARE CONTINUE HANDLER FOR DIVISION_BY_ZERO
SET cnt = -1;

FOR obj AS SELECT REF(e) FROM Employee e DO
IF (obj.salary/obj.workHour) > 200 THEN -- line (A)

SET cnt = cnt + 1;
END IF;

END FOR;

RETURN cnt; -- line (B)
END;

The following example declares the exception handler within the FOR loop. If
the division-by-zero error happens at line (A), then the exception handler is
executed and the control goes to line (B), i.e., does not exit from the FOR loop.

BEGIN
DECLARE cnt INTEGER DEFAULT 0;

FOR obj AS SELECT REF(e) FROM Employee e DO
DECLARE CONTINUE HANDLER FOR DIVISION_BY_ZERO

SET cnt = -1;

IF (obj.salary/obj.workHour) > 200 THEN -- line (A)
SET cnt = cnt + 1;

END IF;
... -- line (B)

END FOR;

RETURN cnt;
END;

User Defined
Exceptions

You can define an user exception in a method or a statement block, which can
be used to raise an exception using the SIGNAL statement. The form to declare
a user defined exception is:
Stored Methods and Statement Blocks 163

DECLARE <exception-name> CONDITION
[FOR <user-exception-code>];

If <user-exception-code> is not provided, the code is set to 0.

Here is an example, which declares a user defined exception and defines a
handler for it as well:

DECLARE too_many_elements CONDITION FOR CODE 1002;
DECLARE CONTINUE HANDLER FOR too_many_elements

...;

An exception name needs to be unique within a statement block.

Unhandled
Exception

If an exception is not handled by anyone, the unhandled exception is returned
to the client application that called the method or the statement block.

For example, if a method raised DIVISION_BY_ZERO exception and is not
handled by anyone, then the client API that called the method, e.g.,
executeQuery() for Java or MtSQLExecDirect() for C, returns the
MATISSE_DIVISION_BY_ZERO exception.

If an user defined exception is not handled, then the client returns the
MATISSE_USER_EXCEPTION error. In order to get more information about
the user exception, use the C API MtSQLGetParamValue() or equivalent in
other language bindings. The second parameter for MtSQLGetParamValue()
can be one of the followings:

MTSQL_USER_EXCEPTION_NAME, to get the name of the user
exception

MTSQL_USER_EXCEPTION_CODE, to get the code of the user exception

MTSQL_USER_EXCEPTION_MESSAGE, to get the text message of the
user exception. If no text message was specified by the SIGNAL statement,
then you get MT_NULL as its return type, not MT_STRING.

13.8 Using Lists
You can use list types, e.g., list of integer, in SQL methods or statement blocks.
An element in a list is accessible using square brackets ([]), and elements can
be added/removed from a list using ADD, REMOVE, or INSERT functions.
You can also use the list functions AVG, MIN, MAX, SUM, COUNT,
ELEMENT and SUBLIST presented in section 10.3, List Functions.

Access using
brackets

You can access an element of a list at a specific place using square brackets list
many other programming languages. The following example returns the second
element in a list:

BEGIN
164 Matisse SQL Programmer’s Guide

DECLARE aList LIST(INTEGER)

DEFAULT LIST(INTEGER)(10, 20, 30);

RETURN aList[2]; -- will return ‘20’

END;

If the subscript is out of bounds, an error is returned.

Set list
assignment

You can assign a list to a list variable with the SET function. The following
example returns an empty list:

BEGIN

DECLARE aList LIST(INTEGER); -- no value

SET aList = LIST(INTEGER)(10, 20, 30);

SET aList = LIST(INTEGER)();

RETURN aList; -- will return ‘an empty list’

END;

You can also use the brackets expression combined with the SET function for
replacing an element at a specific location. The following example replace the
third element in the list:

BEGIN

DECLARE aList LIST(INTEGER);

SET aList = LIST(INTEGER)(10, 20, 30);

SET aList[3] = 35;

RETURN aList[3]; -- will return ‘35’

END;

If the subscript is out of bounds, an error is returned.

ADD To add an element to a list, use the ADD function.

ADD(list, element|list)

The function adds the new element to the end of the list. If the new element to
be added is NULL, the function returns the MATISSE_NULL_OBJECT error.
The following example adds an element to a list, a list to a list and then returns
the updated list:

BEGIN

DECLARE aList LIST(INTEGER) DEFAULT LIST(INTEGER)(1, 2);

DECLARE bList LIST(INTEGER) DEFAULT LIST(INTEGER)();

ADD(bList, 3);

ADD(aList, bList);

RETURN aList; -- will return ‘(1,2,3)’

END;

INSERT To insert an element to a list, use the INSERT function.
Stored Methods and Statement Blocks 165

INSERT(list, element, n)

The function inserts the new element before the n-th element in the list. If n is
less than 1or more than the number of elements in the list, it raises an out-of-
bounds error. If the new element to be inserted is NULL, the function returns
the MATISSE_NULL_OBJECT error. The following example insert an element
into a list and then returns the updated list:

BEGIN

DECLARE aList LIST(INTEGER) DEFAULT LIST(INTEGER)(3);

INSERT(aList, 1, 1);

INSERT(aList, 2, 2);

RETURN aList; -- will return ‘(1,2,3)’

END;

REMOVE To remove an element in a list, use the REMOVE function.

REMOVE(list, n)

The function removes an element at the n-th position in the list. If n is less than
1or more than the number of elements in the list, it raises an out-of-bounds
error. The following example remove an element from a list and then returns
the updated list:

BEGIN

DECLARE aList LIST(INTEGER)

DEFAULT LIST(INTEGER)(1, 2, 3);

REMOVE(aList, 3);

RETURN aList; -- will return ‘(1,2)’

END;

Using other list
functions

The following example shows the AVG, MIN, MAX, SUM, COUNT,
ELEMENT and SUBLIST functions used in block statement:

BEGIN

DECLARE aList LIST(INTEGER);

DECLARE res INTEGER;

SET aList = LIST(INTEGER)(1,2,3);

SET res = AVG(aList);

SET res = MIN(aList);

SET res = MAX(aList);

SET res = SUM(aList);

SET res = COUNT(aList);

SET res = ELEMENT(aList, 2); -- equivalent to aList[2]

RETURN SUBLIST(aList, 2, 1);

END;
166 Matisse SQL Programmer’s Guide

13.9 System Defined Methods
Currently, Matisse SQL provides two system defined methods.

isMetaSchema() is defined for the class MtClass. It returns true if the class
is part of the meta schema, for example the class MtAttribute. Otherwise, it
returns false.

isPredefinedObject() is defined for the class MtObject. It returns true if the
object is one of the objects that are generated when the database is
initialized. Otherwise, it returns false.

For example, you can select all the user defined classes with the following SQL
statement:

SELECT * FROM MtClass c WHERE c.isMetaSchema() = false;

13.10 Debugging Methods
The PSM_OUTPUT module allows developers to easily trace the execution of
stored methods. The functions in this module enable you to print out variable
name, type and content as well as messages from SQL methods into the database
log file. The PRINT function prints out an expression value. The PRINT_LINE
function prints out an expression value and then terminates the line. The
PRINT_VARIABLE function prints out detailed information about a variable
(name, type and value) and then terminate the line. The ENABLE function
enables calls to PRINT, PRINT_LINE and PRINT_VARIABLE. Calls to these
functions are ignored if the PSM_OUTPUT module is not enabled. The
DISABLE function disables calls to PRINT, PRINT_LINE and
PRINT_VARIABLE, and purges the message buffer of any remaining
information.

PSM_OUTPUT

Syntax PSM_OUTPUT.PRINT(<expression>)

PSM_OUTPUT.PRINT_LINE(<expression>)

PSM_OUTPUT.PRINT_VARIABLE(<expression>)

PSM_OUTPUT.ENABLE()

PSM_OUTPUT.DISABLE()

Example BEGIN

DECLARE Obj Person;
Stored Methods and Statement Blocks 167

[...]

PSM_OUTPUT.PRINT(Obj.LastName);

PSM_OUTPUT.PRINT_LINE('');

PSM_OUTPUT.PRINT_LINE(CONCAT('printTrace() - ',
Obj.FirstName));

PSM_OUTPUT.PRINT_VARIABLE(obj.OID);

END

An excerpt of the log file after running the SQL statement above:

24 Oct. 2007 18:03:58 PSM Output: Washington
24 Oct. 2007 18:03:58 PSM Output: printTrace() - Georges
24 Oct. 2007 18:03:58 PSM Output: V2 (MT_OID) = 0x1086

The following example disables calls to PRINT, PRINT_LINE and
PRINT_VARIABLE, and purges the message buffer of any remaining
information:

BEGIN

PSM_OUTPUT.DISABLE();

END

The example below enables calls to PRINT, PRINT_LINE and
PRINT_VARIABLE:

BEGIN

PSM_OUTPUT.ENABLE();

END
168 Matisse SQL Programmer’s Guide

14 Options

14.1 Setting Options

MEMORY_QUO
TA

SET MEMORY_QUOTA statement can be used to set the maximum memory
that an SQL execution can use in the server. For example,

SET MEMORY_QUOTA 100M;

The above statement sets the memory quota to 100 Megabyte.

A memory quota is effective per connection to the server. Once memory quota
is set to some value, the memory quota is effective until the connection to the
server is closed.

The default memory quota is 500 MB. The minimum memory quota is 50 MB.

CONNECTION_
OPTION

Connection options affect the way you can interact with the database. These
options allows you to specify the type of access to the database, the object
locking policy as well as the amount of time the server waits for access conflicts
to be resolved.

Syntax SET CONNECTION_OPTION DATA_ACCESS_MODE { DEFAULT

| DATA_READONLY

| DATA_MODIFICATION

| DATA_DEFINITION

}

Example SET CONNECTION_OPTION DATA_ACCESS_MODE DATA_DEFINITION;

UPDATE schema objects ...;

COMMIT;

This option allows you to specify the type of access that you intend to use when
connecting to the database. Possible values are:

• DATA_READONLY allows read only access to the data objects and to the
schema. Any attempt to start a transaction will fail (only SET
TRANSACTION READ ONLY is allowed).

• DATA_MODIFICATION (default) allows read/write access to the data
objects and read only access to the schema.
Options 169

• DATA_DEFINITION allows read/write access to the data objects and to the
schema.

The first two access modes optimize the access to the schema. The
DATA_DEFINITION access mode must be used only when schema or meta-
schema updates are necessary.

This option cannot be changed when the transaction is in progress.

Syntax SET CONNECTION_OPTION LOCKING_POLICY { DEFAULT

| DEFAULT_ACCESS

| ACCESS_FOR_UPDATE

}

Example SET CONNECTION_OPTION LOCKING_POLICY ACCESS_FOR_UPDATE;

This option allows the server to be configured to handle requests for read locks
using write locks instead. The possible values are:

• DEFAULT_ACCESS (default): Normal behavior, requests for read locks
result in read locks.

• ACCESS_FOR_UPDATE: Requests for read locks result in write locks.

This option may be changed at any time.

Syntax SET CONNECTION_OPTION LOCK_WAIT_TIME { DEFAULT

| NO_WAIT

| WAIT_FOREVER

| number

}

Example SET CONNECTION_OPTION LOCK_WAIT_TIME 500;

This option allows you to specify the amount of time the server waits for access
conflicts to be resolved; if a time-out occurs (wait-time expires), the explicit or
implicit lock request is rejected. The possible values are:

• NO_WAIT: If the lock cannot immediately be granted, the lock request is
released and the function returns immediately.

• WAIT_FOREVER (default): The server waits until there is a deadlock or
until the lock is granted.

• A positive integer: This is the time (in milliseconds) that the server waits for
the lock to be granted. If the wait-time expires, the lock request is rejected. If
a deadlock occurs, the transaction fails or the lock request is rejected.

When multiple objects are requested, the wait-time applies to each object request
individually. The wait-time affects the process of obtaining locks for reads and
writes within transactions. Object version requests are affected neither by locks
nor by wait-times.
170 Matisse SQL Programmer’s Guide

Options 171

Appendix A
172 Matisse SQL Programmer’s Guide

Appendix A Sample Application
Schema

This appendix describes the sample application schema most commonly used
throughout the SQL examples in the previous sections. The schema is described
in the Matisse ODL format.

interface Movie : persistent

{

 attribute String Name;

 mt_entry_point_dictionary "MovieNameDict"

 entry_point_of Name

 make_entry_function "make-entry";

 attribute String Title;

 mt_entry_point_dictionary "MovieTitleDict"

 entry_point_of Title

 make_entry_function "make-full-text-entry";

 attribute String Synopsis;

 mt_entry_point_dictionary "MovieSynopsisDict"

 entry_point_of Synopsis

 make_entry_function "make-full-text-entry";

 attribute String Rating;

 attribute String Category;

 attribute Long RunningTime = Long(0);

 attribute Long rankForWeek;

 attribute Image Thumbnail;

 attribute Video Preview;

 relationship Set<MovieDirector>

 directedBy [0, 1]

 inverse MovieDirector::Direct;

 relationship List<Artist>

 Starring [0, -1]

 inverse Artist::Biography;

 relationship Set<boxOffice>

 boxOfficeRecords [0,-1]

 inverse boxOffice::topTitles;

};

interface Artist : persistent
173

{

 attribute String LastName;

 attribute String FirstName;

 mt_entry_point_dictionary "LastNameDict"

 entry_point_of LastName

 make_entry_function "make-entry";

 relationship Set<Movie>

 Biography [0, -1]

 inverse Movie::Starring;

};

interface MovieDirector : Artist : persistent

{

 relationship Set<Movie> Direct

 inverse Movie::directedBy;

};

interface boxOffice : persistent

{

 attribute Date week;

 attribute Long totalReceipts = Long(0);

 attribute List<Numeric(10, 2)> topReceipts;

 relationship Set <Movie>

 topTitles [0,50]

 inverse Movie::boxOfficeRecords;

};

interface Theater : persistent

{

attribute String Name;

relationship List<Movie> playingMovies;

};
174 Matisse SQL Programmer’s Guide

175

Appendix B Using Matisse SQL with C-
APIs

This section describes how to use Matisse SQL with Matisse C-APIs.

A SQL statement manipulates object instances of Matisse classes, which are
qualified by their class name.

A SQL statement can access both the relationships and the attributes of Matisse
objects. The attributes and relationships of the object instances of a class are the
attributes and relationships defined for the class itself as well as the attributes
and relationships defined on all the superclasses from which the class inherits.

The execution of a SQL SELECT statement produces a projection for the
columns defined in the Select-list.

Here is a simple example using the C API:

MtSTS sts;

MtSQLStmt stmt;

MtStream stream;

/* initialization */

sts = MtSQLAllocStmt (&stmt);

/* execute a SQL statement */

sts = MtSQLExecDirect (stmt, "SELECT * FROM person");

if (MtFailure(sts))

printf ("Error!! code = %d, message = %s\n", sts,

MtError());

/* open a row stream on statement */

sts = MtSQLOpenStream (&stream, stmt);

/* get the row value for the first column */

MtSQLNext (stream);

MtSQLGetRowValue(stream, 1, ...);

/* clean up */

sts = MtCloseStream (stream);

sts = MtSQLFreeStmt (stmt);
176 Matisse SQL Programmer’s Guide

Please refer to the Matisse C API Reference for more detailed information on
how to use Matisse SQL C APIs.
177

Index

Symbols
– 63
% 71
* 63
+ 64
/ 63
< 62, 63, 69
<= 62, 69
<> 62, 69
= 62, 69
> 62, 69
>= 62, 69
>> 63
^ 63
_ 72
| 63
˜ 63
″ 63

A
ABS 110
ACOS 110
ADD 155, 165
ADD_ALL 155
AFTER 82
alias 38
ALL 66, 74, 80
ALTER 123
AND 38, 65
ANY 66, 74, 80
arithmetic expression 63
ASC 48
ASCII 70
ASIN 111
assignment 151
AT 20
ATAN 111
ATAN2 111

ATTRIBUTE 123
attribute 38
AVG 98, 101, 105

B
BEFORE 82
BETWEEN 65
BIT_COUNT 110
Bitwise Operators 63
boolean 19
bytes 22

C
CALL 143, 144
CARDINALITY 118
CASE SENSITIVE 128
CAST 108
CEILING 111
CHAR_LENGTH 90
character string constant 19
class statements 115–117, 117–126
CLEAR 156
COALESCE 87
COMMIT 85
COMMIT WORK 85
COMPILE 133
CONCAT 88
conditional join 34
constant 18
CONSTRAINT 118
CONTAINS 156
CONTINUE 163
COS 111
COT 111
COUNT 156
COUNT 79, 101, 102, 105
CREATE 117, 126, 128, 130
178 Matissse SQL Programmer’s Guide

CURRENT_DATE 20
CURRENT_DATE 106
CURRENT_TIMESTAMP 21
CURRENT_TIMESTAMP 107

D
DATE 20
date constant 20
DECLARE 160
DEFAULT 118
DefaultSelection 161
DEGREES 112
DELETE 138
DELETED 82
DESC 48
DISABLE 167
DISTINCT 47
division 65
DIVISION_BY_ZERO 164
DROP 126, 127, 129, 132
DROP SELECTION 37

E
ELEMENT 98
empty relationship 80
ENABLE 167
entry point 75
entry point dictionaries 128–129
ESCAPE 73
EXCEPT 137, 154
exception 162

handler 162

unhandled 164
user defined 163

EXIT 162
EXP 112
EXTRACT

DAY 107
HOUR 107
MICROSECOND 107
MINUTE 107
MONTH 107
SECOND 107
YEAR 107

EXTRACT 107

F
FALSE 19, 37
filter

CLASS 78, 79
ONLY 78, 79
Index 179

FILTERED 42
FLOOR 112
FOR 148
FOREIGN KEY 118
FROM 26
full text search 75

G
Generalized method invocation 144
GET 156
GMT 20
GROUP BY 53, 56

H
HAVING 49, 56

I
identifier 22
IF 145
IN 75, 80
indices 126–128
INHERIT 119
INSERT 157, 165
INSERT 134
INSERTED 82
INSTR 89
interger constants 18
INTERSECT 137, 154
INTO 35
INVERSE 118
IS NULL 67
ITERATE 150

J
join 33

L
LEAVE 149
LEFT 90
LENGTH 90

LIKE 72
LIMIT 58
LIST 118
LIST 101
list functions 97–101
LN 112
LOCAL 20
LOCATE 91
LOG 113
LOG10 112
LOG2 112
LOOKUP 143
LOOP 146
LOWER 91
LPAD 91
LTRIM 92

M
MAX 99, 102, 105
MEMORY_QUOTA 169
METHOD 130
Method Invocation 141
Methods 129
MIN 99, 103, 106
MOD 113
MtAllAttributes 31
MtAllInverseRelationships 31
MtAllMethods 31
MtAllRelationships 31
MtAllSubclasses 31
MtAllSubnamespaces 32
MtAllSuperclasses 31
MtClassName 30
MtClassOid 30
MtFullClassName 30
MtFullName 30

N
natural join 34
navigational queries 78
NOT 40, 65, 67
180 Matissse SQL Programmer’s Guide

NULL 68, 77, 80
Null 64
null value 18
NULLIF 88
numeric constants 18

O
OFFSET 58
OID 27
ONLY 26
operator

arithmetic 63
comparison 62
negation 65

OR 38
ORDER BY 48

P
PARALLEL 61
pass by reference 152
pattern 71
PI 113
POWER 113
precedence 39
predecessor 77
predicate 37, 38

BETWEEN 65

entry point 75
IN 75, 80
IS OF 41
LIKE 72
NULL 67

PRIMARY KEY 118
PRINT 167
PRINT_LINE 167
PRINT_VARIABLE 167
Projection 26
PSM_OUTPUT 167

R
RADIANS 113
READ ONLY 84
READ WRITE 85
real constants 19
REF 28, 45
REFERENCES 118
REFERENCES 118
Referential Constraint 123
RELATIONSHIP 118
relationship 77

navigation 78
Index 181

REMOVE 158, 166
REMOVE_AT 158
REMOVE_DUPLICATES 159
REPEAT 147
REPLACE 93
REPLICATE 93
RESIGNAL 152
result types 64
RETURN 151
RETURNING 135
REVERSE 93
RIGHT 94
ROLLBACK 86
ROLLBACK WORK 86
ROUND 113
RPAD 94
RTRIM 95

S
search criteria 37
SELECT 25
SELECTION 153
Selection 35
SELF 144
SELF 142
SET 118, 159
SET 151
set functions 101–104
SET TRANSACTION 85
SIGN 114
SIGNAL 152
SIN 114
SQL functions 87–97
SQRT 114
statement block 159
Static Method 143
string 19
SUBLIST 99
SUBSTR 95
SUBSTRING 95
successor 77

SUM 100, 103, 106

T
TAN 114
text comparison 69
TIMESTAMP 20
timestamp constant 20
TRANSACTION 84
TRIM 96
TRUE 19, 37
TRUNCATE 114
type compatibility 151
type predicate 41

U
UNDER 119
UNFILTERED 42
UNION 137, 154
UNIQUE 126, 128
UNIQUE 118
Unique Constraint 122
UNKNOWN 37, 69
UPDATE 135
UPDATED 82
UPPER 97
UTC 20, 21

V
version 82
version travel 82

W
WHERE 37
WHILE 147
wildcard character 71
182 Matissse SQL Programmer’s Guide

	Matisse® SQL Programmer’s Guide
	Tables
	Contents
	Introduction
	Conventions

	1 SQL Query Analyzer and mt_sql Utility
	1.1 SQL Query Analyzer
	1.2 Simple Example with mt_sql
	1.3 Basic Usage
	1.4 Command Line Options
	Table�1.1 Command Line Options

	1.5 Online Help
	1.6 Discovering the Schema

	2 Constants and Identifiers
	2.1 What Is a Constant?
	Integer Constants
	Numeric Constants
	Real Constants
	Boolean Constants
	Character String Constants
	Date and Timestamp Constants
	Time Interval Constants
	Bytes Constants
	List Constants

	2.2 What Is an Identifier?
	2.3 Matisse SQL Reserved Words
	Table�2.1 Matisse SQL Reserved Words�

	3 Selecting Data
	3.1 Using the SELECT Command
	Using the ONLY Keyword
	Specifying a SQL Projection
	List Types in SQL Projection
	Aliases in SQL Projection
	OID, and Relationship in SQL Projection
	REF() in SQL Projection
	Table�3.1 Comparison of OID and REF()
	SQL Methods in SQL Projection
	Get a Successor at a Position in a Relationship
	Pseudo Attributes
	Pseudo Relationships

	3.2 Join Operation
	Natural Join
	Conditional Join
	Sorting the Result

	3.3 Using SQL Selections
	Create an SQL Selection
	Select from SQL Selections
	Selection Class
	Delete a Selection

	3.4 Specifying a Search Criteria with WHERE
	3.5 Using Attributes in Expressions
	Specifying an Attribute in a WHERE Clause

	3.6 Combining Predicates with AND and OR
	Table�3.2 AND Operator Truth Table
	Table�3.3 OR Operator Truth Table
	Precedence of Evaluation of AND and OR
	Table�3.4 Equivalent Logical Expressions

	3.7 Specifying a Negative Condition with NOT
	3.8 Specifying a Type Predicate with IS OF
	3.9 Specifying UNFILTERED
	3.10 Navigation Filtering with FILTERED
	Matching Predicates
	Matching Predicates with Composition
	Unmatching Predicates
	Filtering and Reordering Relationship with REF()
	Relationship COUNT

	3.11 Getting DISTINCT Values
	3.12 Specifying Sort Criteria with ORDER BY
	3.13 Filtering with HAVING
	Filtering List Type Values
	Aggregate Values from SQL Methods

	3.14 Grouping with GROUP BY
	Grouping by Class
	Grouping with Navigation
	Grouping by Composition

	3.15 Filtering with HAVING in GROUP BY
	GROUP BY / HAVING with Navigation

	3.16 LIMIT and OFFSET
	3.17 Subqueries
	Subquery for Comparison
	Subquery used with IN
	Subquery with EXISTS

	3.18 Specifying PARALLEL

	4 Using Numeric Values
	4.1 Introduction
	4.2 Comparison Operators
	Table�4.1 Comparison Operators

	4.3 Bitwise Operators
	Table�4.2 Bitwise Operators

	4.4 Performing Arithmetic Operations
	Expressions and Arithmetic Operators
	Evaluating an Expression: An Example

	4.5 Result Types from Arithmetic Expressions
	Table�4.3 Types Resulting from Arithmetic Operation
	Table�4.4 Type Resulting from the Negation Operation

	4.6 Performing an Interval Test
	4.7 Using the ANY and ALL Keywords

	5 Using Null Values
	5.1 Introduction
	5.2 What Is a Null Value?
	5.3 The IS NULL Keyword
	Example: Comparison with Null Values
	Table�5.1 IS [NOT] NULL

	6 Using Text Values
	6.1 Introduction
	6.2 What Does Text Comparison Mean?
	Table�6.1 Text Comparison Operators
	How Character Strings Are Compared
	Table�6.2 ASCII Characters and Their Numeric Values�

	6.3 What Is a Pattern?
	6.4 How to Use the % Wildcard Character
	6.5 How to Use the Underscore Wildcard Character
	6.6 Specifying a Pattern with the LIKE Keyword
	6.7 How to Use an Escape Character
	6.8 Using the ANY and ALL Keywords
	Quantified Comparison with the ANY Keyword
	Comparison with the ALL Keyword
	Equivalent Comparisons
	Table�6.3 Equivalent Expressions Using ANY and ALL
	Alternate Syntax
	Examples

	6.9 Selecting Objects by Entry Points
	Exact Match Search
	Pattern Matching

	7 Using Relationships
	7.1 Introduction
	7.2 What Is a Relationship?
	7.3 Positional Access
	7.4 Navigational Queries
	Using a Single Relationship in the Select-list
	Using Relationships and Other Columns in the Select-list
	Using a Relationship in the WHERE Clause
	Relationship COUNT
	Dealing with Empty Relationships

	7.5 The IN Keyword
	Comparing with a List of Successors

	8 Version Travel
	8.1 Introduction
	8.2 Specifying a Version Travel Query

	9 Managing Transactions and Versions
	9.1 Introduction
	9.2 Starting a Version Access
	9.3 Ending a Version Access
	9.4 Starting a Transaction
	9.5 Committing a Transaction
	9.6 Cancelling a Transaction

	10 SQL Functions
	10.1 Expressions Functions
	COALESCE
	Syntax
	Purpose
	Arguments
	Example

	NULLIF
	Syntax
	Purpose
	Arguments
	Example

	10.2 Character String Functions
	CONCAT
	Syntax
	Purpose
	Arguments
	Example

	INSTR
	Syntax
	Purpose
	Arguments
	Description
	Example

	LEFT
	Syntax
	Purpose
	Arguments
	Example

	LENGTH
	Syntax
	Purpose
	Arguments
	Description
	Example

	LOCATE
	Syntax
	Purpose
	Arguments
	Example

	LOWER
	Syntax
	Purpose
	Arguments
	Example

	LPAD
	Syntax
	Purpose
	Arguments
	Example

	LTRIM
	Syntax
	Purpose
	Arguments
	Description
	Example

	REPLACE
	Syntax
	Purpose
	Arguments
	Example

	REPLICATE
	Syntax
	Purpose
	Arguments
	Example

	REVERSE
	Syntax
	Purpose
	Arguments
	Example

	RIGHT
	Syntax
	Purpose
	Arguments
	Example

	RPAD
	Syntax
	Purpose
	Arguments
	Example

	RTRIM
	Syntax
	Purpose
	Arguments
	Description
	Example

	SUBSTR
	Syntax
	Purpose
	Arguments
	Example

	TRIM
	Syntax
	Purpose
	Arguments
	Example

	UPPER
	Syntax
	Purpose
	Arguments
	Example

	10.3 List Functions
	AVG
	Syntax
	Purpose
	Argument
	Description
	Example

	ELEMENT
	Syntax
	Purpose
	Argument
	Example

	MAX
	Syntax
	Purpose
	Argument
	Example

	MIN
	Syntax
	Purpose
	Argument
	Example

	SUBLIST
	Syntax
	Purpose
	Argument
	Example
	Example

	SUM
	Syntax
	Purpose
	Argument
	Example

	COUNT
	Syntax
	Purpose
	Argument
	Description

	LIST
	Syntax
	Purpose
	Example

	10.4 Set Functions
	AVG
	Syntax
	Purpose
	Argument
	Description
	Example

	COUNT
	Syntax
	Purpose
	Example

	MAX
	Syntax
	Purpose
	Argument
	Description

	MIN
	Syntax
	Purpose
	Argument
	Description

	SUM
	Syntax
	Purpose
	Argument
	Description
	Example

	10.5 Set functions for relationship aggregation
	AVG
	Syntax
	Purpose
	Argument
	Example

	COUNT
	Syntax
	Purpose
	Example

	MAX
	Syntax
	Purpose
	Argument
	Example

	MIN
	Syntax
	Purpose
	Argument
	Example

	SUM
	Syntax
	Purpose
	Argument

	10.6 Datetime Functions
	CURRENT_DATE
	Syntax
	Synonyms
	Purpose

	CURRENT_TIMESTAMP
	Syntax
	Synonyms
	Purpose

	EXTRACT
	Syntax
	Purpose
	Example

	10.7 Conversion Functions
	CAST
	Syntax
	Purpose
	Table�10.1 Supported casts between built-in data types
	Example

	10.8 Numeric Functions
	BIT_COUNT
	Syntax
	Purpose

	ABS
	Syntax
	Purpose

	ACOS
	Syntax
	Purpose

	ASIN
	Syntax
	Purpose

	ATAN
	Syntax
	Purpose

	ATAN2
	Syntax
	Purpose

	CEILING
	Syntax
	Purpose

	COS
	Syntax
	Purpose

	COT
	Syntax
	Purpose

	DEGREES
	Syntax
	Purpose

	EXP
	Syntax
	Purpose

	FLOOR
	Syntax
	Purpose

	LN
	Syntax
	Purpose

	LOG10
	Syntax
	Purpose

	LOG2
	Syntax
	Purpose

	LOG
	Syntax
	Purpose

	MOD
	Syntax
	Purpose

	PI
	Syntax
	Purpose

	POWER
	Syntax
	Purpose

	RADIANS
	Syntax
	Purpose

	ROUND
	Syntax
	Purpose

	SIGN
	Syntax
	Purpose

	SIN
	Syntax
	Purpose

	SQRT
	Syntax
	Purpose

	TAN
	Syntax
	Purpose

	TRUNCATE
	Syntax
	Purpose

	11 Defining a Schema
	11.1 Namespaces
	CREATE
	Syntax
	Creating Namespace

	ALTER
	Syntax
	Renaming Namespace

	DROP
	Syntax
	Dropping Namespace

	CURRENT_NAMESPACE
	Syntax
	Renaming Namespace

	11.2 Classes, Attributes, and Relationships
	CREATE
	Syntax
	Inheritance
	Attribute
	Maximum Size of Attribute
	Relationship
	Unique Constraint
	Referential Constraint

	ALTER
	Syntax
	Drop Properties
	Add Properties
	Modify Properties
	Rename Properties

	DROP
	Syntax
	Dropping Class

	11.3 Indexes
	CREATE
	Syntax
	Criteria

	DROP
	Syntax
	Dropping Index

	11.4 Entry Point Dictionaries
	CREATE
	Syntax
	Make-Entry Function

	DROP
	Syntax
	Removing Entry Point Dictionary

	11.5 Methods
	CREATE
	Syntax
	Creating a New Method
	Static Method
	Updating a Method

	DROP
	Syntax
	Removing Method

	COMPILE
	Syntax
	Recompile Methods

	12 Manipulating Data
	12.1 Inserting Data
	INSERT
	Syntax
	Attributes
	Relationships
	Returning clause

	12.2 Updating Data
	UPDATE
	Syntax
	Attributes
	Relationships

	12.3 Deleting Data
	DELETE
	Syntax
	Example

	12.4 Auto Increment Attribute
	Example

	13 Stored Methods and Statement Blocks
	13.1 A Simple Example
	13.2 Method Invocation
	Calling a Method in SELECT Statement
	Calling a Method in Method Body
	Calling a Method with LOOKUP
	Syntax
	Example
	Calling a Static Method
	Syntax
	Example
	Static Method and Query Optimization
	Calling a Method in a Superclass
	Calling a Method returning a Table
	Syntax
	Example

	13.3 Update Object in a Method
	13.4 Control Statements
	IF Statement
	Syntax
	Example

	LOOP Statement
	Syntax
	Example

	REPEAT statement
	Syntax
	Example

	WHILE Statement
	Syntax
	Example

	FOR Statement
	Syntax
	Example

	LEAVE Statement
	Syntax
	Example

	ITERATE Statement
	Syntax
	Example

	RETURN Statement
	Syntax
	Example

	SET Assignment Statement
	Syntax
	Type Compatibility
	Pass by Reference
	Numeric Overflow

	SIGNAL Statement
	Syntax
	Example

	RESIGNAL Statement
	Syntax
	Example

	13.5 Selections in the Server
	Construct for Selections
	Methods for Selections
	ADD
	Syntax
	Purpose
	Arguments
	Example

	ADD_ALL
	Syntax
	Purpose
	Arguments
	Example

	CLEAR
	Syntax
	Purpose

	CONTAINS
	Syntax
	Purpose
	Arguments
	Example

	COUNT
	Syntax
	Purpose
	Example

	GET
	Syntax
	Purpose
	Arguments
	Example

	INSERT
	Syntax
	Purpose
	Arguments
	Example

	REMOVE
	Syntax
	Purpose
	Arguments
	Example

	REMOVE_AT
	Syntax
	Purpose
	Arguments
	Example

	REMOVE_DUPLICATES
	Syntax
	Purpose
	Example

	SET
	Syntax
	Purpose
	Arguments
	Example

	13.6 Statement Blocks
	Syntax
	Variable Declaration
	Direct Execution of Statement Block
	Returning Objects from Statement Block
	Returning a Table from Statement Block

	13.7 Exception Handling
	Declaration of Handler
	Handler Types
	User Defined Exceptions
	Unhandled Exception

	13.8 Using Lists
	Access using brackets
	Set list assignment
	ADD
	INSERT
	REMOVE
	Using other list functions

	13.9 System Defined Methods
	13.10 Debugging Methods
	PSM_OUTPUT
	Syntax
	Example

	14 Options
	14.1 Setting Options
	MEMORY_QUO TA
	CONNECTION_ OPTION
	Syntax
	Example
	Syntax
	Example
	Syntax
	Example

	Appendix A
	Appendix A Sample Application Schema
	Appendix B Using Matisse SQL with C- APIs
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

