
Getting Started with
Matisse

January 2017

Getting Started with Matisse

Copyright © 2017 Matisse Software Inc. All Rights Reserved.

This manual and the software described in it are copyrighted. Under the
copyright laws, this manual or the software may not be copied, in whole or in
part, without prior written consent of Matisse Software Inc. This manual and
the software described in it are provided under the terms of a license between
Matisse Software Inc. and the recipient, and their use is subject to the terms of
that license.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c)(l)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-
7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. and
international patents.

TRADEMARKS: Matisse and the Matisse logo are registered trademarks of
Matisse Software Inc. All other trademarks belong to their respective owners.

PDF generated 7 January 2017

Getting Started with Matisse
Contents

1 Introduction . 5
1.1 Scope of This Document . 5
1.2 Before Reading This Document . 5

2 Matisse Quickstart . 6

3 Overview of Matisse Development . 10

4 Components of a Matisse Database . 11
4.1 Application Schema . 11
4.2 Class Inheritance . 12
4.3 Referential Integrity and Cardinality Constraints . 13
4.4 SQL Methods . 14
4.5 Indexes . 14
4.6 Entry-Point Dictionaries . 15
4.7 The Meta-Schema . 15

5 Dynamic Schema Evolution . 17

6 Matisse in Operation . 18
6.1 Connections . 18
6.2 Transactions . 18
6.3 Database Locks . 19
6.4 Version Access . 20
6.5 Named Versions . 20
6.6 Client Cache Management . 20

7 Running the Demo Applications . 22
Data Migration Demo . 22
Reusable SQL Components Demo . 22
XML Documents Demo . 22
Data Reporting Demo. 22
Matisse Lite Edition Demo . 23
.NET Demo Programs . 23
Java Demo Programs. 23
C++ Demo Programs . 24

8 Matisse Tools and Documentation . 25
8.1 Development Tools . 25
8.2 Utilities . 26

9 Schema Objects Properties . 28
9.1 Rules for Naming Schema Objects . 28
9.2 Class Properties . 28
9.3 Attribute Properties . 29
Contents 3

Getting Started with Matisse
9.4 Relationship Properties . 30
9.5 Index Properties . 31
9.6 Entry-Point Dictionary Properties . 31

Glossary . 32
Contents 4

Getting Started with Matisse
1 Introduction

1.1 Scope of This Document
This document is intended to help new users learn the basics of Matisse design and programming. It
serves as an introduction to the Matisse SQL Programmer’s Guide, Matisse .NET Programmer’s Guide
(including ADO.NET), the Matisse C++ Programmer’s Guide, the Matisse Eiffel Programmer’s Guide,
the Matisse PHP Programmer’s Guide, the Matisse Python Programmer’s Guide, and the Matisse Java
Programmer’s Guide.

1.2 Before Reading This Document
Throughout this document, we presume that you already know the basics of database design and are
familiar with the languages you plan to use to develop Matisse applications.
Introduction 5

Getting Started with Matisse
2 Matisse Quickstart
If you have just downloaded Matisse, you can get rapidly a sense of how it works by following the steps
in this section which show you how to create a database, populate it with instances, and query the
instances you have just created.

Initialize the ‘example’ database

• On MS Windows, start the Enterprise Manager, click on ‘Programs->Matisse->Enterprise Manager’
from the start menu.

• On Unix, first verify that you have the right environment. To that effect, you may run the mt_env.sh or
mt_env.csh script in your install directory. Then start the Enterprise Manager:

% sh <INSTALL_PATH>/mt_env.sh
% mt_emgr &
6 Matisse Quickstart

Getting Started with Matisse
Figure 2.1 The Database View in Matisse Enterprise Manager

• In the database view, Right click on the ‘example’ database. Then click on ‘Start’. At this point, you
have an empty database up and running.

Create instances of the class ‘movie’

• Under ‘example’, open the node ‘Data’, then click on ‘SQL Query Analyzer’. Create a class and
insert some instances, you may cut and paste the following statement in the SQL Query Editor
window:

CREATE CLASS Movie (Title VARCHAR(64), Rating VARCHAR(4));
Matisse Quickstart 7

Getting Started with Matisse
Figure 2.2 The SQL Query Analyzer

• Click ‘Execute Query’ and then ‘Clear SQL Query Editor’ (the left most eraser icon) and enter the
following statement:

INSERT INTO Movie (Title, Rating) VALUES ('Rocky', 'R');

• Click ‘Execute Query’ and then ‘Clear SQL Query Editor’ and enter the following statement:

SELECT * FROM Movie;

• Following the same procedure, enter the following statement to create your first SQL method, which
counts the movies according to some rating:

CREATE STATIC METHOD CountMovies(aRating STRING)
RETURNS INTEGER
FOR Movie
BEGIN

DECLARE Cnt INTEGER DEFAULT 0;
SELECT COUNT(*) INTO Cnt FROM Movie WHERE Rating = aRating;
RETURN Cnt;

END;

• At this stage, you have created a simple schema in your database ‘example’ and added some data in
the database. In the left side window, you may open the ‘Classes’ node under ‘Schema’ to view the
schema that you have created.
8 Matisse Quickstart

Getting Started with Matisse
Figure 2.3 Example Database Schema

• You can save this schema in DDL (Data Definition Language) format with a right click on the
‘Schema’ node, then ‘Export DDL Schema ...’. It produces a text file that contains your SQL DDL
statements.

• You may execute the method ‘CountMovies’ with a right click on the method node
‘CountMovies(STRING)’, then substitute the string ‘<aRating STRING>’ with ‘R’. The statement
should look as follows before you execute it:

CALL Movie::CountMovies('R');
Matisse Quickstart 9

Getting Started with Matisse
3 Overview of Matisse Development
A typical Matisse development project will consist of the following steps, not necessarily in this order.

Design

• Decide which of the various Matisse APIs and bindings (C, C#, C++, Eiffel, Java, Perl, PHP, Python,
Smalltalk, Visual Basic, XML, and also ADO.NET, JDBC, or ODBC) are most appropriate for your
application.

• Sketch out the conceptual model for the database to determine what classes, attributes, and
relationships will be required.

• Define the corresponding application schema using SQL Data Definition Language (DDL), the
Object Description Language (ODL), or Matisse Modeler tool (UML-like).

• Write the core logic of your application with SQL Stored Methods. These methods are stored and
executed on the server side and can be called from any client environment.

Create a database

• Create and initialize your database.

• Load your schema and SQL methods into the database.

Automatic code generation for client applications

• This step is not necessary if you use the C API or a third party SQL tool. If appropriate, generate C#,
C++, Eiffel, Java, or Visual Basic class files corresponding to the schema classes (See the relevant
Matisse Programmer’s Guide).

• You may produce HTML documentation for the generated C#, C++, or Java classes.

Write the client application code

• Write the rest of your client application’s code, which may include extensions in the user area of the
generated class files, and debug.

Maintenance

When your application evolves in such a way that it becomes necessary to change the application
schema:

• With SQL DDL: Use CREATE or ALTER statements to make the changes.

• With ODL: Revise the ODL definition, then import it from the Enterprise Manager to update the
schema in the database.

• With Matisse Modeler: Revise the model, then export to Matisse.
10 Overview of Matisse Development

Getting Started with Matisse
4 Components of a Matisse Database

4.1 Application Schema
In Matisse, you design a schema for your application using three basic components: classes, attributes,
and relationships.

The following UML diagram of a simple database schema illustrates the three components and how they
relate:

• The classes Employee and Department contain the attributes FirstName, LastName, and HireDate.

• The two schema classes are linked by the relationship Members and its inverse MemberOf. The
cardinality indicators (0..* and 0..1) show that this is a one-to-many relationship: a department may
have any number (0..*) of members, but an employee may be a member of only one department.

Try it

• You can create this schema with the following statements. Enter the following statements in the ‘SQL
Query Editor’ window:

CREATE CLASS Employee (FirstName VARCHAR(32) NOT NULL,
LastName VARCHAR(32) NOT NULL,
HireDate DATE,
MemberOf REFERENCES (Department) CARDINALITY (0, 1)

INVERSE Department.Members);
CREATE CLASS Department (DeptName VARCHAR(32),

Members REFERENCES SET (Employee) CARDINALITY (0, -1)
INVERSE Employee.MemberOf);

• Then right click on ‘Classes’, then ‘Refresh’, to view the classes you have created. You can create
some instances and link them as follows:

INSERT INTO Department (DeptName)
VALUES ('Sales') RETURNING REF(Department) INTO aDepartment;
Components of a Matisse Database 11

Getting Started with Matisse
INSERT INTO Employee (FirstName, LastName, HireDate, MemberOf)
VALUES ('John', 'Smith', DATE '2000-10-12', aDepartment);

DROP SELECTION aDepartment;

• Then to view the instances that you have created:

SELECT p.*, p.MemberOf.DeptName FROM Employee p;

relational
database
counterpart:
tables

A schema class is similar to a table in a relational database. For example, the class
Employee defines a set of instances, one for each employee, each of which contains
attribute values that stores a particular person’s employee’s name and hire date,
just as in a relational database the table EMPLOYEE would contain a set of rows,
one for each employee, which would store the same data.

4.2 Class Inheritance
A class may be defined as a subclass that inherits all of its superclasses properties and defines additional
attributes and/or relationships.

Multiple inheritance is supported. However, it must be avoided when exporting your classes in C#, Java,
or Smalltalk, which do not allow multiple inheritance.

Try it

You can create the Manager class, which inherits from Employee and adds a Team relationship. Enter the
following statements in the ‘SQL Query Editor’ window:

CREATE CLASS Manager UNDER Employee (
Team REFERENCES SET (Employee) CARDINALITY (0, -1)

INVERSE Employee.ReportsTo);
ALTER CLASS Employee ADD RELATIONSHIP

ReportsTo REFERENCES (Manager) CARDINALITY (0, 1)
INVERSE Manager.Team;
12 Components of a Matisse Database

Getting Started with Matisse
4.3 Referential Integrity and Cardinality Constraints
At right, Employee and Manager have one relationship that
defines which employees report to which managers, and
another that identifies each manager’s assistant.

The cardinality of each end of a relationship is controlled
by specifying the minimum and maximum number of
successors allowed (with infinity represented by -1 in
code and * in diagrams). If a single integer is specified, it
is both the minimum and the maximum number. In the
example at right:

• An employee must report at most to one manager
(0..1).

• A manager’s team consists of any number of
employees (0..*).

Matisse automatically maintains referential integrity. For
example, if an Employee instance is deleted, the reference
to the employee is automatically removed from the
successors of the Manager instance to which is it
associated through the Manager.Team relationship.

relational
database
counterpart:
foreign keys

Matisse relationships work in a similar way than foreign keys between relational
tables, but Matisse relationships make database design simpler and more efficient:

• You do not need to define the additional columns and indexes that are required
for making things work with primary keys and foreign keys.

• The definition of many-to-many relationships does not require to use
intermediate tables.

• You can use navigational expressions to access data. For example, you could
find all the employees who report to a particular manager using the SQL
statement “SELECT * FROM Employee WHERE ReportsTo.LastName = 'Steiner'”.
Components of a Matisse Database 13

Getting Started with Matisse
4.4 SQL Methods
SQL Stored Methods (or more simply ‘SQL methods’) are always associated to a class and stored as part
of your application schema in the database. Like for other properties of a class, Methods are inherited in
subclasses.

You can define either STATIC or INSTANCE methods:

• An INSTANCE method is executed for a given instance and can access or update the instance with the
keyword SELF. An instance method that is inherited in a subclass can be overridden as you define
another method with the same name and signature in the subclass.

• A STATIC method is not associated at execution time with a particular instance. To call a static
method, you must mangle the class name with the method. For instance to call the static method
CountMovies on the class Movie: ’CALL Movie::CountMovies('R');’.

SQL Methods are executed on the database server side. Method execution can be invoked interactively
with a CALL statement, from within another method, or from within the WHERE clause of a SELECT
statement.

Try it

You can create the isRRated instance method on the Movie class:

CREATE INSTANCE METHOD isRRated()
RETURNS BOOLEAN
FOR Movie
BEGIN

IF SELF.Rating = 'R' THEN
RETURN TRUE;

ELSE
RETURN FALSE;

END IF;
END;

Then, you can execute it in a WHERE clause:

SELECT m.* FROM Movie m WHERE m.isRRated() = TRUE;

4.5 Indexes
Indexes are selected by the Matisse SQL optimizer to speed up the processing for the ORDER BY clause
and for the WHERE clause filtering when running equi-match and range queries. You can also use indexes
from the C API and the language bindings to lookup instances based on a key value.

For a given class, up to four attributes can be used to form a composite key for an index. The attributes
used in an index must be non-nullable. You may add or drop an index at any time, without stopping the
database operations.

Matisse indexes are inherited. For instance, an index defined on the class Employee is inherited by the
subclass Manager. The following queries will use the same index:
14 Components of a Matisse Database

Getting Started with Matisse
SELECT * FROM Employee WHERE LastName = 'Steiner';

SELECT * FROM Manager WHERE LastName = 'Steiner';

SELECT * FROM ONLY Manager WHERE LastName = 'Steiner';

Try it

The following statement creates an index for the Employee class:

CREATE INDEX EmpIdx ON Employee (LastName ASC, FirstName ASC);

4.6 Entry-Point Dictionaries
An entry-point dictionary is an indexing structure containing keywords derived from a string value. For
instance, you may use an entry-point dictionary to implement full text indexing on an attribute containing
some textual data.

• The keywords generated for an entry-point dictionary depend on which make-entry function is
selected. Currently two functions are provided: the default make-entry function indexes the full content
of the attribute value as a single key, while the full-text-make-entry function generates keys for all the
words that are contained in a textual attribute value.

• An entry-point dictionary is automatically updated whenever an update to an associated instance is
committed.

• You may add or drop an entry-point dictionary at any time, without stopping the database operations.

For instance, if you have an entry-point dictionary ContentDict defined with the full-text-make-entry function
on the attribute Content for the class Book, you can retrieve the titles of all books that contain a particular
word:

SELECT * FROM Book WHERE ENTRY_POINT(ContentDict) LIKE 'Grape%'

Try it

The statements to create the class Book and the associated dictionary ContentDict would be like this:

CREATE CLASS Book (Title VARCHAR(64), Content TEXT);
CREATE ENTRY_POINT DICTIONARY ContentDict ON Book (Content)

MAKE_ENTRY "make-full-text-entry";

4.7 The Meta-Schema
The meta-schema is a pre-defined schema from which the classes and other objects that comprise your
application schema are instantiated. For instance:

• schema classes are instantiated from MtClass

• attribute descriptors are instantiated from MtAttribute
Components of a Matisse Database 15

Getting Started with Matisse
• relationship descriptors are instantiated from MtRelationship

One benefit of the meta-schema is that it allows the dynamic discovery of the application schema.

Try it

For instance, to list all the classes, attributes an methods, defined in your database, you may run the
queries:

SELECT MtName FROM MtClass;

SELECT MtName FROM MtAttribute;

SELECT MtName FROM MtMethod;
16 Components of a Matisse Database

Getting Started with Matisse
5 Dynamic Schema Evolution
You can update your database schema using SQL DDL, ODL without having to turn off the database, or
to migrate the existing data. The only restriction is that the integrity constraints on the existing data must
not be violated by adding, removing, or updating property definitions. The next table shows the
limitations for each case of schema change when data already exists in the database.

Note that SQL methods in the database may need to be recompiled after a schema change and they need
to be consistent with the new schema. For example, if you remove an attribute from a class, make sure
that no SQL stored method references the attribute. To recompile all the SQL methods in your database,
use the COMPILE ALL statement.

Table 1 Limitations of Schema Update When Data Exists

Type of Change Description of Limitation

Add/Update an attribute The new attribute needs to have a default value (a), or it needs to be nullable (b).
Examples in SQL DDL:
(a) ALTER CLASS Manager ADD ATTRIBUTE Bonus INTEGER DEFAULT 0;
(b) ALTER CLASS Person ADD ATTRIBUTE Address VARCHAR(250);

Remove an attribute no constraint

Add/Update a
relationship

The minimum cardinality of the new relationship needs to be 0.
Example in SQL DDL:
ALTER CLASS Employee

ADD REFERENCES worksIn (Project)
CARDINALITY (0, 5)
INVERSE ...

Remove a relationship no constraint

Add a superclass no constraint

Remove a superclass no constraint
Dynamic Schema Evolution 17

Getting Started with Matisse
6 Matisse in Operation
This document covers only those aspects of Matisse operation and administration with implications for
the programmer. For information on aspects of Matisse operation that are transparent to applications,
such as datafile configuration, see the Matisse Server Administration Guide.

6.1 Connections
Client applications interact with Matisse through a “connection” that handles basic communication
between the client application and the Matisse server application: selecting a server and a particular
database, login, starting and committing or aborting transactions, and so on.

• A Matisse database can handle many simultaneous connections from a variety of clients. For
example, a database could simultaneously be accessed from a Web Server with client threads using
PHP or JDBC, by standalone clients running a C#, C++, Eiffel, or Java application, and by a SQL
ODBC-based reporting tool.

• A Matisse client can connect to multiple databases by using multiple connections. The Matisse Client
library is thread safe and allows you to establish multiple connections in the same thread or in
separate threads.

For detailed information about connections, see the relevant API or language binding documentation.

6.2 Transactions
Once a connection with a database has been established, the next step in interacting with Matisse is to
open a transaction (read-write access) or a version access (read-only; see Version Access). See the
relevant API or language binding documentation for examples.

Matisse transactions follow the “ACID” rule:

• Atomicity: transactions are either committed completely or aborted.

• Consistency is maintained at all times.

• Isolation: the results of one transaction are not visible to other transactions until it is committed.

• Durability: committed transactions are not affected by server or system failure.

When a transaction is committed, Matisse does the following:

• It checks that all the instances that were created or modified to verify the constraints of the schema:
that an attribute of type INTEGER does not have a non-integer or out-of-range value, that a non-
nullable attribute with no default value has a value, that a relationship with a maximum cardinality of
1 does not have more than one successor, and so on.

• If any check fails, Matisse returns an error message identifying the invalid instance. The transaction
is not aborted; if the client application knows how to handle the error, it can fix it and try to commit
again.
18 Matisse in Operation

Getting Started with Matisse
• If all checks pass, the modified instances are written in the database and the transaction is validated.

• If specified by the commit instruction, a new named version of the database is created.

6.3 Database Locks
Matisse automatically sets read and write locks on individual instances. The locking rules are as follows:

• Several transactions can read an attribute or relationship simultaneously.

• A transaction cannot modify an attribute or relationship while it is being read or modified by another
transaction. An attempt to make such a modification will be blocked by the server until the other
transaction is committed or aborted. If the optional LOCK_WAIT_TIME argument was passed when
initiating the connection, the attempt will fail if the time-out expires before the other transaction
releases its locks.

• A transaction can modify an attribute or relationship that is being read by a version access; (Matisse
will preserve an unmodified copy for use by the version access).

When two transactions have read a particular instance property and then both transactions try to modify
it, a deadlock arises. For example:

1. Client 1 reads a value, establishing a read lock on the attribute.

2. Client 2 reads the same value, establishing a second read lock on the attribute.

3. Client 1 attempts to update the value. Since client 2 has a read lock, the server holds this attempt
pending commit or abort of client 2’s transaction.

4. Client 2 attempts the same update. Since client 1 has a read lock, the server holds this attempt as
well, pending commit or abort of client 1’s transaction.

Thus each transaction is being held pending commit or abort of the other. Matisse resolves such
deadlocks by aborting:

• the transaction with the lower priority (a priority from 1 to 8 may optionally be specified when
opening a transaction);

• or, if the priorities are the same, the transaction that has performed the fewest updates;

• or, if the transactions have performed the same number of updates and have the same priority, the
transaction that caused the deadlock (that is, that attempted the update later).

Such deadlocks can be prevented by either setting an explicit write lock on a given instance, or by using
the ‘Read For Update’ transaction mode. In this mode, all read accesses set write locks in order to be able
to update without upgrading from shared mode to exclusive mode.

All locks are released when the transaction is either committed or aborted.

NOTE: You can take advantage of Matisse version access for data intensive tasks
like data analysis that would require locking or dirty reads in other
database products.
Matisse in Operation 19

Getting Started with Matisse
6.4 Version Access
When a version access (read-only transaction) is opened, all the data stored in the database at that
moment is preserved until the access is closed. This requires no locks or wholesale copying: as instances
are modified by transactions, Matisse preserves unmodified copies for use by the version access.

The figure at right represents a new database in which a transaction (T1)
has created three instances, A, B, and C. If a version access is opened on
this database, then a second transaction (T2) modifies instance B, deletes
instance C, creates a new instance D, and commits. The figure below
shows the result:

In other words, a coherent “snapshot” of the database at the time each version access was started is
preserved without interfering with current transactions’ ability to modify instances. Once the version
access has closed, the preserved copies of old instances will be eligible for garbage collection.

For more about versions, see the Matisse Server Administration Guide.

6.5 Named Versions
Named versions (sometimes called “savetimes”) preserve such “snapshots” of a database indefinitely.
Within an application, named versions can be registered when committing a transaction.

• When declaring a named version, the client application provides a name to identify it.

• To generate the full name for the version, Matisse appends a unique ID number to the name that is
provided. (This ensures that two clients will not create two versions with the same full name.)

• The version is accessed by passing its full or partial name as an argument when opening a version
access.

• Copies of modified instances preserved by Matisse to maintain the named version are not eligible for
garbage collection until the version is manually undeclared using the mt_version command (see the
Matisse Server Administration Guide).

6.6 Client Cache Management
By default Matisse transparently caches data on the client side to optimize access to the network. We
describe here the different caching alternatives that are currently implemented in Matisse.

CBA

A B D
unmodified
modified since version access started what a current transaction sees

what the version access sees

CBA
20 Matisse in Operation

Getting Started with Matisse
Accessing instances in a Client Application

When you access one attribute value or another property of an instance, the instance’s other properties are
also cached. When you access another property for the same instance, the Matisse client retrieves it from
the cache.

When a transaction is committed, the updates are flushed from the client cache to the server. When a
transaction is committed, aborted or a version access is ended, any value read is deleted from the cache.
This ensures that the cache is always consistent with the database.

Streaming Attributes

You may skip the default caching mechanism for large attributes by using the streaming APIs for read
and update access. These APIs stream the attribute content directly from the database server without
caching in the client.

Server Side SQL Execution

The associative access performed by SQL queries is typically data intensive, therefore SQL queries and
SQL methods are always executed on the server side and only the result sets are cached on the client side.
Matisse in Operation 21

Getting Started with Matisse
7 Running the Demo Applications
Demo applications are installed to illustrates diverse features of Matisse. For the .NET binding, the
Matisse .NET Programmer’s Guide explains how to run these applications.

Data Migration Demo
This demo is accessible through the “Read me” page in your Matisse installation. On Windows, click on
“Matisse->Read me” from the Windows Start menu.

The demo called President shows how to create your application schema with SQL DDL (Data
Definition Language), and populate your database with relational data trough the Matisse Data
Transformation Services (DTS) facility and then query the database with SQL.

Reusable SQL Components Demo
This demo is also accessible through the “Read me” page in your Matisse installation. On Windows, click
on “Matisse->Read me” from the Windows Start menu.

The demo called GoalMind is a simple CRM (Customer Relationship Management) application that
illustrates how to build reusable SQL components with SQL Methods.

The second demo called Friends is a simple social networks application that illustrates how to implement
a graph search algorithm to solve the single-source shortest path problem with SQL Methods.

XML Documents Demo
This demo is accessible through the “Read me” page in your Matisse installation. On Windows, click on
“Matisse->Read me” from the Windows Start menu.

The demo called Media shows how to create your application schema with ODL (Object Definition
Language), and import XML data into a Matisse database. The XML document imported into Matisse
contains both text and multimedia data.

Data Reporting Demo
This demo is accessible through the “Read me” page in your Matisse installation. On Windows, click on
“Matisse->Read me” from the Windows Start menu.

The demo called Reports shows how to create your application schema with ODL (Object Definition
Language), and populate your database with XML Documents and then query the database with SQL to
build ad-hoc reports.
22 Running the Demo Applications

Getting Started with Matisse
Matisse Lite Edition Demo
This demo is accessible through the “Read me” page in your Matisse installation. On Windows, click on
“Matisse->Read me” from the Windows Start menu.

The demo called Lite shows how to develop an application with Matisse Lite, the embedded version of
Matisse DBMS. Matisse Lite is a compact library that implements the server-less version of Matisse.
Matisse Lite provides a transactional, multi-user database engine self-contained in an application process.

.NET Demo Programs
The Matisse .NET demo programs come with the .NET binding installation. You can download the .NET
binding with the ADO.NET data provider from http://www.matisse.com/developers/downloads/.

The Matisse .NET demo programs are provided both for C# and VB.NET. They illustrate:

• How to use ADO.NET

• How to create/update/delete objects

• How to manage relationships between objects

• How to use indexes or entry-point dictionaries to retrieve objects

• How to manage database connections, transactions and version access (read-only transaction)

• How to manipulate object from Matisse Class Reflection APIs

• How to manage database events

• How to manage a pool of connections

• How to extend Matisse Object Factories

• How to use Matisse Data Classes

• How to use object versioning

• How to generate source code for persistent classes in any .NET programming language

Java Demo Programs
The Matisse Java demo programs can downloaded with the Matisse Java Programmer’s Guide from the
Matisse Documentation web page http://www.matisse.com/developers/documentation/.

Requirements

• Install Sun Java Development Kit version 6 or later for your operating system.
Running the Demo Applications 23

Getting Started with Matisse
• Set the MATISSE_HOME and JAVA_HOME environment variables to the top-level directories of the
Matisse and JDK installations.

• If you are running Windows, append ;%matisse_home%\bin;%java_home%\bin to the PATH user variable.

Demos

The Java demo programs illustrate:

• How to use JDBC

• How to create/update/delete objects

• How to manage relationships between objects

• How to use indexes or entry-point dictionaries to retrieve objects

• How to manage database connections, transactions and version access (read-only transaction)

• How to manipulate object from Matisse Class Reflection APIs

• How to manage database events

• How to manage a pool of connections

• How to extend Matisse Object Factories

• How to use object versioning

C++ Demo Programs
The Matisse C++ demo programs can downloaded with the Matisse C++ Programmer’s Guide from the
Matisse Documentation web page http://www.matisse.com/developers/documentation/.

The C++ demo programs illustrate:

• How to create/update/delete objects

• How to manage relationships between objects

• How to use indexes or entry-point dictionaries to retrieve objects

• How to manage database connections, transactions and version access (read-only transaction)

• How to manipulate object from Matisse Class Reflection APIs

• How to manage database events

• How to use object versioning
24 Running the Demo Applications

Getting Started with Matisse
8 Matisse Tools and Documentation

8.1 Development Tools

C API A set of functions that allow user access to and manipulation of almost every
aspect of Matisse databases. The C API functions are defined in the “include” file
matisse.h.

Documentation: the Matisse C API Reference.

C++ binding The C++ binding (included in the standard Matisse installation) provides access to
Matisse databases within C++ applications. Functions are defined in the “include”
file matissecxx.h.

Documentation: the Matisse C++ Programmer’s Guide and the Doc++-generated
API reference in the docs subdirectory of the Matisse program directory

.NET binding
and ADO.NET

The .NET binding provides access to Matisse databases within .NET applications.
It includes both the ADO.NET data provider and the native object interface. The
binding is available on our web site at www.matisse.com/developers/downloads/

Eiffel binding The Eiffel binding provides access to Matisse databases within Eiffel applications.
You can download the binding and documentation from:

www.matisse.com/developers/downloads/

Java binding The Java binding (included in the standard Matisse installation) provides access to
Matisse databases within Java applications. The Matisse Java methods are defined
in matisse.jar in the lib subdirectory of the Matisse program directory.

Documentation: the Matisse Java Programmer’s Guide and the javadoc-generated
API reference in the docs subdirectory of the Matisse installation directory.

ODBC driver The Matisse SQL ODBC driver provides access to Matisse databases from
ODBC-compliant tools.

Documentation: the Matisse installation guides for Linux, Solaris, and MS
Windows.

Perl, PHP, and
Python bindings

These open-source bindings provide access to Matisse databases from the
respective languages. You can download the bindings and documentation from:

www.matisse.com/developers/downloads/
www.matisse.com/developers/documentation/
Matisse Tools and Documentation 25

Getting Started with Matisse
Smalltalk
binding

The Smalltalk binding provides transparent access to Matisse databases from
VisualWorks applications. You can download the binding from:

www.matisse.com/developers/downloads/

Matisse SQL The Matisse SQL language can be used interactively using the Matisse Enterprise
Manager, or embedded in applications created with the Matisse C API or the
language bindings.

Documentation: the Matisse SQL Programmer’s Guide, the Matisse C API
Reference, and the online help in the mt_sql utility.

Matisse XML Matisse XML can be used to exchange data with other applications or to transfer
data between Matisse databases on different platforms (for example, Windows and
Linux).

Documentation: the Matisse XML Programming Guide and the online help in the
mt_xml utility

8.2 Utilities

mt_emgr Matisse Enterprise Manager. You may use this tool to create, configure, initialize,
start, monitor, stop, back up, and restore databases, as well as to manage database
disk usage, versions, and security. The administration operations can also be
performed with the command line utilities mt_backup, mt_connection, mt_file,
mt_partition, mt_replicate, mt_server, mt_transaction, mt_user and mt_version.

Documentation: Matisse Server Administration Guide

mt_modeler Matisse Database Modeler. You may use this tool to design and manage yout
database schema.

Documentation: Matisse Modeler User’s Guide

mt_sdl This command line utility allows you to import and export a database schema
using SQL DDL (Data Definition Language) or ODL (Object Definition
Language). It is also used to generate persistent class files for the C++, C#, Java,
and Eiffel bindings.

Documentation: Matisse ODL Programmer’s Guide and Matisse SQL
Programmer’s Guide

mt_sql Matisse SQL interactive query tool.

Documentation: Matisse SQL Programmer’s Guide
26 Matisse Tools and Documentation

Getting Started with Matisse
mt_xml Matisse XML import/export utility. With this tool you can load data from an XML
file into a database, dump data from a database to an XML file, and transfer data
between Matisse databases on different platforms (for example, Windows and
Solaris).

Documentation: Matisse XML Programming Guide

mt_dts Matisse Data Transaformation Services utility. With this tool you can extract,
transform and load data from a relational source into a Matisse database.

Documentation: Matisse Data Transaformation Services Guide

mt_xsr Matisse XML-based Snapshot Replication utility. With this tool you can replicate
databases.

Documentation: Matisse Server Administration Guide
Matisse Tools and Documentation 27

Getting Started with Matisse
9 Schema Objects Properties
This section details the definition of the schema objects that make up your application schema. A schema
is made of a set of classes, attributes, relationships, methods, indexes, and/or entry-point dictionaries.

9.1 Rules for Naming Schema Objects
• The names that can be used for all schema objects must contain only alphanumeric characters and the

underscore character (a-z, A-Z, 0-9, and _), and must start with a letter.

• Names must not contain spaces or punctuation other than the underscore character.

So, for example, Class_9 is a valid name, but Class 9, Class-9, Class.9, and 9Class are invalid.

9.2 Class Properties
Matisse schema classes are always persistent. A class has the following properties:

class name Required. Class names must be unique.

superclass name Optional. If a superclass is specified, this class inherits all of its properties.
Multiple superclasses may be specified if all the programming languages you are
using support multiple inheritance (C# and Java do not).

attributes Optional. Define the values to be stored in instances of this class (and any
subclasses).

relationships Optional. Define relationships between instances of this class (and any subclasses)
and instances of the successor class (or its subclasses).

index
specifications

Optional.

entry-point
dictionary

specifications

Optional.

method
specifications

Optional. The SQL methods for the class.

For instance the definition of the class Movie with the attributes Title and Rating, and
the associated method CountMovies is exported in DDL format like this:

--
-- Class Definitions
--
CREATE TABLE Movie (

 Title VARCHAR(64),
 Rating VARCHAR(4)
28 Schema Objects Properties

Getting Started with Matisse
);

--
-- Methods on Movie
--

CREATE STATIC METHOD CountMovies(aRating STRING)
RETURNS INTEGER
FOR Movie
BEGIN

DECLARE Cnt INTEGER DEFAULT 0;
SELECT COUNT(*) INTO Cnt FROM Movie WHERE Rating = aRating;
RETURN Cnt;

END;

9.3 Attribute Properties
An attribute has the following properties:

attribute name Attribute names must be unique within a class and any of its subclasses. In other
words, two classes may have attributes of the same name, unless one class inherits
from the other.

type The data type (STRING, INTEGER, etc.) of the attribute.

nullable A boolean indicating whether the attribute will allow NULL values. Note that when
creating a schema with ODL attributes are not nullable unless you specify Nullable,
while in SQL DDL attributes are nullable unless you specify NOT NULL.

When nullable is True and no default value is specified, Matisse automatically sets
the default value to NULL.

When nullable is False and no default value is specified, when you create an
instance you must explicitly set the attribute value before attempting to commit
your updates.

maximum size The maximum size for variable size attributes. For instance with SQL DDL, a
maximum size of 12 for a string type attribute can be expressed as ‘VARCHAR(12)’.

default value Optional. A value returned when accessing an attribute value that has not been set
or that has been cleared.

Note that default values are not physically stored in the corresponding attribute
values of instances instantiated from the class. Thus if you change the default
value for an attribute in your schema, it will be immediately reflected in the
associated instances. To put it another way, in Matisse default values are class
variables, not initial values.
Schema Objects Properties 29

Getting Started with Matisse
9.4 Relationship Properties
Relationships are usually declared in pairs. For example, the Employee class might specify a MemberOf
relationship with the Department class, and the Department class a corresponding Members relationship with
the Employee class. With the Matisse Modeler tool this relationship pair is represented as a single
association, and the individual relationships as “roles.”

A relationship has the following properties:

relationship name Relationship names must be unique within a class and any of its subclasses.

successor class The “target” class for this relationship. In the example below, Department is the
successor class of MembersOf, and Employee is the successor class of Members.

A class may be the successor class of its own relationships. A typical example is
the Father / Children relationship pair between instances of a class Person.

inverse
relationship

The other relationship of the pair, specified in the successor class.

If appropriate a relationship may be specified as its own inverse, a typical example
is the Spouse relationship between instances of a class Person.

cardinality
constraint

The minimum and maximum number of successor instances allowed. The
minimum cardinality is usually 0 or 1, indicating whether successors are optional
or required. The maximum cardinality is usually 1 or -1 (representing unlimited),
indicating whether it is a “to-one” or “to-many” relationship. Common cardinality
settings (and their UML counterparts used in schema diagrams) include:

0, -1: may have any number of successors, or none (UML *)

0, 1: may have one successor, or none (UML 0..1)

1, 1: must have one and only one successor (UML 1)

1, -1: must have at least one successor (UML 1..*)
30 Schema Objects Properties

Getting Started with Matisse
read-only
constraint

To simplify programming, one of the two relationships in a pair is usually set
read-only, so that all updates must be performed from the other side.

• In SQL DDL, this is done by specifying the readonly parameter.

• In the Matisse Modeler this is set by the Navigable option on the role’s Details
tab. By default, Role A is read-write (Navigable checked) and Role B is read-
only (Navigable unchecked).

9.5 Index Properties
An index is declared for a given class, it has the following properties:

index name Index names must be unique within a class and any of its subclasses.

criteria The names of the attribute(s) to be indexed. You may specify up to four criteria.

sort order Set separately for each criterion. Specifies whether the index will be sorted
ascending or descending for that criterion.

unique key
constraint

If set to True, each entry in the index must be unique. If set to False, the index may
contain duplicate entries.

The key size for an index is limited to 256 bytes. For an index defined with multiple criteria, the sum of
the sizes for the attributes to be indexed must not exceed 256.

9.6 Entry-Point Dictionary Properties
An entry-point dictionary has the following properties:

dictionary name Entry-point dictionary names must be unique within a class and any of its
subclasses.

attribute name The name of the attribute for which the entry-point dictionary will be maintained.

unique key
constraint

If set to True, each entry in the dictionary must be unique. If set to False, the
dictionary may contain duplicate entries.

case sensitivity If set to True, dictionary lookups are case-sensitive. If set to False, lookups are case-
insensitive.

make-entry
function

The name of the function to be used to generate keys (also called entry-points) for
the dictionary. Two such functions are included with Matisse: "make-entry"
generates one key per instance based on the full attribute value, "make-full-text-entry"
extracts the words contained in a textual attribute value and generates a separate
key for each distinct word in the attribute value.
Schema Objects Properties 31

Getting Started with Matisse
Glossary

abstract class: A class which cannot be instantiated, that is, a class from which other classes may be
derived, but which cannot be used to create objects. (Matisse itself has no abstract classes; the term is
used only in language-binding documentation.)

atomic transaction: A transaction that either successfully applies all of its updates to the database or
leaves the database unchanged.

attribute value: The value that is stored in a database object for a given attribute.

attribute: A property of a class that defines the values that will be stored in objects instantiated from the
class. For example, an object representing a person would typically contain some values for the person’s
first name and last name.

cardinality: A constraint for a relationship that defines the minimum and maximum number of
successors allowed.

class: A schema object that defines the structure of the objects that can be generated from the class. A
class definition can contains attribute and relationship properties, superclasses, indexes and entry-point
dictionaries. See also abstract class, metaclass.

class method: A method that applies to a class as a whole rather than to individual objects instantiated
from the class; for example, a method that returns the number of instances of a class.

class variable: A value shared by all instances of a class. In Matisse, class variables can be defined by
modifying or extending MtClass (see meta-schema)

constructor: A class method that creates an object. It is a convention in some object-oriented
programming languages that every class has a constructor with the same name as the class.

data type: See type.

database: The live database running on a Matisse server.

database schema: See schema.

database server: The process that runs a Matisse database.

datafile: A file, disk partition (raw device) or ramdisk device allocated to a Matisse database. A database
can have up to 255 datafiles on as many disks. For fault tolerance and best performance, in a production
environment each datafile should be on a different disk.

datapage: The minimum amount of data that can be read from or written to disk by the Matisse server in
any single I/O operation. Datapages are contained in datafiles.
32 Glossary

Getting Started with Matisse
default value: A value returned when Matisse attempts to read an attribute value that has either not been
set or that has been removed from an object. Note that this is not an initial value copied to objects but
rather a class variable associated with the attribute descriptor; see default value on page 29 for a detailed
discussion.

descriptor: In Matisse schema definition elements like classes, attributes and relationships are stored as
objects in the database and are sometimes referred to as descriptors. For instance an attribute descriptor
describes the name and the type of value that an attribute can accept within a data object.

entry-point dictionary: An indexing structure that allows fast retrieval of objects based on keyword
searches. It is typically used for full-text indexing or to provide a fast object lookup capability. When
creating an entry-point dictionary, you associate a make-entry function that will be used to automatically
generate the keywords to be indexed.

garbage collection: Permanently removing obsolete object versions from the database in order to
recover disk space.

identifier: See object identifier.

index: An indexing structure that optimizes retrieval of objects based on a value or set of values and
provides fast execution for ORDER BY SQL statements.

instance: See object.

interface: In ODL, a set of statements that declares a class. In Matisse API and language binding
references, it may have other meanings specific to the language in question.

inverse relationship: All relationships are declared with both direct and inverse orientations. Which is
which depends on which end of the relationship you start from. For example, in the schema diagrammed
below, Department.Members is the inverse of the direct relationship Employee.MemberOf, which itself is the
inverse of the direct relationship Department.Members.

In some cases, a relationship may be its own inverse (for instance a Spouse relationship).

list of successors: See relationship successors.
Glossary 33

Getting Started with Matisse
literal: A literal is a specific symbol that represents a data value. For example, the literals 2.6 and 2.60
both represent the same floating-point value.

make-entry function: See entry-point dictionary.

metaclass: A class whose instances are classes, rather than data objects. The only metaclass in Matisse is
MtClass.

meta-schema: The initial set of Matisse classes from which classes and other schema objects are
instantiated. For instance MtAttribute, MtClass, MtEntryPointDictionary, MtIndex, and MtRelationship are part of the
meta-schema.

method: A function defined for a class. Procedural components of Matisse database applications are
typically implemented using methods.

null: An undefined value. An attribute value is set as undefined by setting it to the value NULL, which is
possible only if nullable has been set in the corresponding attribute descriptor. For discussion of some
consequences of making an attribute non-nullable, see default value.

object: In Matisse documentation, used by itself, it generally refers to an instance of a class, that is, a
persistent object. An object contains attribute values and relationship successors corresponding to each
of the attributes and relationships defined for its class in the schema. See also schema object.

Object Description Language (ODL): A language that can be used to define the schema of a Matisse
database and to generate persistent classes for the different language bindings. Matisse ODL follows the
ODL standard promulgated by the Object Data Management Group (odmg.org).

object identifier: All objects in a Matisse database are automatically assigned stable unique identifiers
that the system uses to distinguish them and to manage relationships.

In C, C++, Java, and other languages, “identifier” commonly refers to the name of an object or stored
value. To avoid confusion, it is not used in that sense in the Matisse documentation.

ODL: See Object Description Language (ODL).

OID: See object identifier.

predecessor: An object that references other objects through a given relationship is said to be the
predecessor of the objects that it references.

programming type: In reference to the C API, a C type (as opposed to a Matisse type).

property: An attribute or a relationship defined for a class. For example, the attribute LastName is a
property of the class Person.

relationship: Relationships are class properties that define links between objects. A relationship is
defined between two (or more) classes. For instance the relationship Department.Members may be defined
between the class Department and the class Employee. In this example the class Employee is referred to as the
successor class. See also inverse relationship.
34 Glossary

Getting Started with Matisse
relationship successors: The object content corresponding to a relationship defined in the schema class
for the object. The relationship part of an object stores the list of object identifiers that identify its
successors (also called the “list of successors”).

When an object is deleted, Matisse automatically removes its object identifier from the relationship part
of the objects to which it is a successor.

savetime: See versioning.

scalar type: A type that takes a single value (as opposed to a list type).

schema: The portion of a database that describes the structure of the data objects. Also called an
application schema to distinguish it from the meta-schema. For example, a schema might contain classes
such as Employee and Department, from which data objects representing specific individuals and
departments can be instantiated; attributes such as Employee.Name, Employee.SSNum, and Department.Name
which define the values to be stored in the data objects; and relationships such as Employee.MemberOf and
Department.Members define the possible links between the data objects of the Employee and Department classes.
See also meta-schema.

schema object: An object that describes an element of a schema in a Matisse database. For instance the
definition of the class Employee is stored as a schema object. See also schema.

static: Describes a method or other function associated with a class as a whole, not with particular
instances of a class: for example, a function that returns the number of objects in a class. See class
variable.

stream: A byte-stream of data sent from the Matisse server to a client, or vice-versa.

successor: An object reachable by navigational access through the relationship successors of another
object.

successor class: See relationship.

superclass: A class that is inherited by another class.

transaction: In Matisse, the term “transaction” generally means a read-write transaction. A read-only
transaction is called a “version access.”

type: In regard to the definition of an attribute, short for data type, it specifies which type of data
(boolean, integer, string, etc.) the associated values will store.

UML: Unified Modeling Language. See www.omg.org/technology/uml for more information.

user method: In a schema class generated for a language binding, a method added manually by the user,
rather than generated automatically by the mt_sdl utility.

value: See attribute value.

version: A copy of an object at a given time, the latest copy being called the “current version”. Also used
as a synonym for “savetime,” it provides a snapshot of an entire database at a given time. See versioning.
Glossary 35

Getting Started with Matisse
version access: A read-only transaction that provides consistent access to a snapshot of the database
without locking.

version collection: See garbage collection.

versioning: The automatic preservation of old object versions in order to preserve a consistent
“snapshot” of the database at a particular time (a “savetime”). When an object is modified, Matisse saves
the changes in a new copy of the object. The unmodified version of the object is preserved until all the
relevant version accesses have been closed.

Named versions may also be created manually with the mt_dba utility or the mt_version command, or by
specifying a version name as an argument to transaction commit.

Unnamed versions created by Matisse are removed automatically during garbage collection. Named
versions created by users or client applications are kept until they are explicitly undeclared.
36 Glossary

	Getting Started with Matisse
	Contents
	1 Introduction
	1.1 Scope of This Document
	1.2 Before Reading This Document

	2 Matisse Quickstart
	Initialize the ‘example’ database
	Create instances of the class ‘movie’

	3 Overview of Matisse Development
	Design
	Create a database
	Automatic code generation for client applications
	Write the client application code
	Maintenance

	4 Components of a Matisse Database
	4.1 Application Schema
	Try it
	relational database counterpart: tables

	4.2 Class Inheritance
	Try it

	4.3 Referential Integrity and Cardinality Constraints
	relational database counterpart: foreign keys

	4.4 SQL Methods
	Try it

	4.5 Indexes
	Try it

	4.6 Entry-Point Dictionaries
	Try it

	4.7 The Meta-Schema
	Try it

	5 Dynamic Schema Evolution
	6 Matisse in Operation
	6.1 Connections
	6.2 Transactions
	6.3 Database Locks
	6.4 Version Access
	6.5 Named Versions
	6.6 Client Cache Management
	Accessing instances in a Client Application
	Streaming Attributes
	Server Side SQL Execution

	7 Running the Demo Applications
	Data Migration Demo
	Reusable SQL Components Demo
	XML Documents Demo
	Data Reporting Demo
	Matisse Lite Edition Demo
	.NET Demo Programs
	Java Demo Programs
	Requirements
	Demos

	C++ Demo Programs

	8 Matisse Tools and Documentation
	8.1 Development Tools
	C API
	C++ binding
	.NET binding and ADO.NET
	Eiffel binding
	Java binding
	ODBC driver
	Perl, PHP, and Python bindings
	Smalltalk binding
	Matisse SQL
	Matisse XML

	8.2 Utilities
	mt_emgr
	mt_modeler
	mt_sdl
	mt_sql
	mt_xml
	mt_dts
	mt_xsr

	9 Schema Objects Properties
	9.1 Rules for Naming Schema Objects
	9.2 Class Properties
	class name
	superclass name
	attributes
	relationships
	index specifications
	entry-point dictionary specifications
	method specifications

	9.3 Attribute Properties
	attribute name
	type
	nullable
	maximum size
	default value

	9.4 Relationship Properties
	relationship name
	successor class
	inverse relationship
	cardinality constraint
	read-only constraint

	9.5 Index Properties
	index name
	criteria
	sort order
	unique key constraint

	9.6 Entry-Point Dictionary Properties
	dictionary name
	attribute name
	unique key constraint
	case sensitivity
	make-entry function

	Glossary
	abstract class
	atomic transaction
	attribute value
	attribute
	cardinality
	class
	class method
	class variable
	constructor
	data type
	database
	database schema
	database server
	datafile
	datapage
	default value
	descriptor
	entry-point dictionary
	garbage collection
	identifier
	index
	instance
	interface
	inverse relationship
	list of successors
	literal
	make-entry function
	metaclass
	meta-schema
	method
	null
	object
	Object Description Language (ODL)
	object identifier
	ODL
	OID
	predecessor
	programming type
	property
	relationship
	relationship successors
	savetime
	scalar type
	schema
	schema object
	static
	stream
	successor
	successor class
	superclass
	transaction
	type
	UML
	user method
	value
	version
	version access
	version collection
	versioning

