Matisse® Eiffel

Programmer’s Guide

January 2017

MATISSE Eiffel Programmer’s Guide
Copyright © 2017 Matisse Software Inc. All Rights Reserved.

This manual and the software described in it are copyrighted. Under the
copyright laws, this manual or the software may not be copied, in whole or in
part, without prior written consent of Matisse Software Inc. This manual and
the software described in it are provided under the terms of a license between
Matisse Software Inc. and the recipient, and their use is subject to the terms of
that license.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-
7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. and
international patents.

TRADEMARKS: Matisse and the Matisse logo are registered trademarks of
Matisse Software Inc. All other trademarks belong to their respective owners.

PDF generated 7 January 2017

Introductiont it it 5

Scopeof ThisDocument i 5
Before Reading This Document. 5
Before Runningthe Examples i 5
Connectionand Transaction 7
Buildingthe Examples 7
Read Write Transaction i e 7
Read-Only ACCESS oot 7
VErSioN ACCESS . . ot vttt e e 8
Specific OptioNso 9
More about MT_DATABASE 10
Working with Objectsand Values 1
Running the Exampleson Objects. 11
Creating Objects e e 11
Listing Objectso 13
Deleting Objects. 16
Comparing Objects 17
Running the ExamplesonValues 17
Settingand Getting Values 17
Removing Values. 18
Streaming Values. 18
Retrieving an Object fromits Oid 18
Working with Relationships 20
Running the Examples on Relationships 20
Setting and Getting Relationship Elements 20
Adding and Removing Relationship Elements. 21
Listing Relationship Elements 21
Counting Relationship Elements 22
Working withIndexes i, 23
Running the ExamplesonIndexes 23
INdeX LOOKUD oo 23
Index Lookup Count. 25
Index Entries Count 25
Working with Entry-Point Dictionaries 27
Running the Examples on Dictionaries 27
Entry-Point Dictionary Lookup 27
Entry-Point Dictionary Lookup Count. 29
Working with SQL it 30
Running the Exampleson SQL 30
Executinga SQL Statement. 30

Creating Objects i e 31

Updating Objects 31

Retrieving Values 32
Retrieving Objects from a SELECT statement. 33
Retrieving Objects from a Block Statement 33
Executing DDL Statements 34
Executing SQL Methods. 34
Deleting Objectst 36
8 Working with Class Reflection 37
Running the Examples on Reflection 37
Creating Objects. e 37
Listing Objectso 38
Workingwith Indexes 39
Working with Entry Point Dictionaries. 40
Discovering Object Properties 41
Adding Classes.o 43
Deleting Objects 43
Removing Classest 44
9 Working with DatabaseEvents 45
Runningthe Events Example 45
Events Subscription 45
Events Notification 46
More about MT_EVENT e 46
10 ObjectFactories 47
Connectionwitha Factory 47
Creating your ObjectFactory 47
11 Building your Application 48
Discovering the Matisse Eiffel Classes. 48
Generating Stub Classes 48
Extending the generated Stub Classes 48
Generated Public Methods 49

4 MATISSE Eiffel Programmer’s Guide

1

Introduction

Scope of This Document

This document is intended to help Eiffel programmers learn the aspects of Matisse design and
programming that are unique to the Matisse Eiffel binding.

Aspects of Matisse programming that the Eiffel binding shares with other interfaces, such as basic
concepts and schema design, are covered in Getting Started with Matisse.

Future releases of this document will add more advanced topics. If there is anything you would like to see
added, or if you have any questions about or corrections to this document, please send e-mail to

support@matisse.comn.

Before Reading This Document

Throughout this document, we presume that you already know the basics of Eiffel programming and
either relational or object-oriented database design, and that you have read the relevant sections of
Getting Started with Matisse.

Before Running the Examples

Before running the following examples, you must do the following:

Install Matisse 9.1.0 or later.
Install the Eiffel version 7.0 or later for your operating system.

Download and extract the Matisse Eiffel binding source code and sample code from the Matisse Web
site:

http://www.matisse.com/developers/documentation/

The sample code files are grouped in subdirectories by category. For example, the code snippets from
the following chapter are in the connect directory.

Build the Matisse Eiffel binding from the source code. Follow the building instructions as detailed in
the ReADME file.

Create and initialize a database. You can simply start the Matisse Enterprise Manager, select the
database ‘example’ and right click on ‘Re-Initialize’.

From a Unix shell prompt or on MS Windows from a ‘Command Prompt’ window, change to the
category subdirectory in the directory where you installed the examples.

If applicable, load the ODL file into the database. From the Enterprise Manager, select the database
‘example’ and right click on ‘Schema->Import ODL Schema’. For example you may import
readwrite/objects.odl for the Chapter 3 demo.

Introduction 5

Matisse Eiffel Programmer’s Guide

* Generate Eiffel class files:
mt sdl stubgen --lang eiffel -f objects.odl
* Open the Eiffel project for instance connect.ecf in Eiffel Studio and compile it.

* In Eiffel Studio or in a command line windows run the built application.

Introduction 6

2 Connection and Transaction

All interaction between client Eiffel applications and Matisse databases takes place within the context of
transactions (either explicit or implicit) established by database connections, which are transient instances
of the mT_pATABASE class. Once the connection is established, your Eiffel application may interact with
the database using the schema-specific methods generated by mt sd1. The following sample code shows
a variety of ways of connecting with a Matisse database.

Note that in this chapter there is no ODL file as you do not need to create an application schema.

Building the Examples

1. Follow the instructions in Before Running the Examples on page 5.
2. Change to the connect directory in your installation (under examples).
3. Open the Eiffel project for instance connect .ecf in Eiffel Studio and compile it.

4. In Eiffel Studio or in a command line windows run the built application.

Read Write Transaction

The following code connects to a database, starts a transaction, commits the transaction, and closes the
connection:

local
db: MT_DATABASE

do
create db.make (host, dbname)
db.open ()

db.start_transaction ({MT_DATABASE}.Mt Min Tran Priority)
print ("connection and read write access to: " + db.out + "%N")
db.commit ()

db.close ()
end

Read-Only Access

The following code connects to a database in read-only mode, suitable for reports:

local
db: MT_ DATABASE

do
create db.make (host, dbname)
db.open ()

Connection and Transaction 7

Matisse Eiffel Programmer’s Guide

db.start_version_access (Void)
print ("connection and read only access to: " + db.out + "%N")
db.end_version_access ()

db.close ()
end

Version Access

The following code illustrates methods of accessing various versions of a database.

list versions (db: MT DATABASE)

local
iter: MT_VERSION_ITERATOR
ver : STRING
do
iter := db.version_iterator
from
iter.start
until
iter.exhausted
loop
ver := iter.item
print (" " 4+ ver + "SN")
iter.forth
end
iter.close
end

version navigation (host, dbname:STRING)

local
impossible: BOOLEAN
deviex: DEVELOPER EXCEPTION
db: MT DATABASE
vername : STRING
do

if impossible = False then
print ("$NTest Version Navigation Connect:%N")
create db.make (host, dbname)
db.open ()
db.start_transaction ({MT_DATABASE}.Mt_Max Tran Priority)

print ("Version list before regular commit:%N")
list versions (db)

db.commit ()
db.start_transaction ({MT_DATABASE}.Mt_Max Tran Priority)

print ("Version list after regular commit:S$N")
list versions (db)

vername := db.commit and save ("Snapshot ")
print ("Commit to version named: " + vername + "3N")

Connection and Transaction 8

db.start_version_access (Void)
print ("Version list after named commit:%N")
list versions (db)

db.end_version_access ()

db.start_version_access(vername)
print ("Sucessful access within version: " + vername + "$N")

db.end_version_access ()

db.close()
end
rescue
dev_ex ?= (create {EXCEPTION MANAGER}) .last exception
if dev_ex /= Void then
print ("$NException occurred on " + db.out + "SN")
print ("$NERROR message: " + dev_ex.message + "3N")
if {MT_EXCEPTIONS}.c matisse exception code =
{MT EXCEPTIONS}.MATISSE NOSUCHDB then
print ("Unable to connect to: " + db.out + "%N")
print ("Make sure the database is started%N")

end
end
impossible := True
retry

end

Specific Options

This example shows how to enable the local client-server memory transport and to set or read various
connection options and states.

local
db: MT_DATABASE
do
create db.make (host, dbname)

if read only = True then
db.set_data_access_mode ({MT_DATABASE}.mt_data_ readonly)

else
db.set_data_access_mode ({MT DATABASE}.mt data modification)
end
db.open ()
connected := db.is_connection_open ()
if connected then
if db.data_access_mode () = {MT_DATABASE}.Mt_Data Readonly then
db.start_version_access (Void)
else
db.start_transaction ({MT_DATABASE}.Mt Max Tran_ Priority)
end

Connection and Transaction 9

Matisse Eiffel Programmer’s Guide

print ("connection and ")
if db.is_version_access_in progress () = True then
print ("read only access to: ")

else
print ("read write access to: ")
end
print (db.out)
print ("SN")
if db.is_transaction_in progress() = True then
db.rollback ()
else
db.end_version_access ()
end
db.close ()

end
end

More about MT_DATABASE

As illustrated by the previous sections, the MT DATABASE class provides all the methods for database
connections and transactions. The reference documentation for the MT DATABRASE class is included in the
Matisse Eiffel Binding API documentation located from the Matisse Eiffel binding installation root
directory in docs/eiffel/api/index.html.

Connection and Transaction 10

3 Working with Objects and Values

This chapter explains how to manipulate object with the object interface of the Matisse Eiffel binding.
The object interface allows you to directly retrieve objects from the Matisse database without Object-
Relational mapping, navigate from one object to another through the relationship defined between them,
and update properties of objects without writing SQL statements.

The object interface can be used with Matisse Eiffel SQL interface as well. For example, you can retrieve
objects with SQL, then use the object interface to navigate to other objects from these objects, or update
properties of these objects using the accessor methods defined on these classes.

Running the Examples on Objects

This sample program creates objects from 2 classes (Person and Employee), lists all person objects
(which includes both objects, since Employee is a subclass of person), deletes objects, then lists all
Person objects again to show the deletion. Note that because FirstName and LastName are not nullable,
they must be set when creating an object.

1. Follow the instructions in Before Running the Examples on page 5.
2. Change to the readwrite directory in your installation (under examples).

3. Load objects.odl into the database. From the Enterprise Manager, select the database ‘example’
and right click on ‘Schema->Import ODL Schema’, then select chap 3/objects.odl for this demo.

4. Generate Eiffel class files:
mt sdl stubgen --lang eiffel -f objects.odl
5. Open the Eiffel project for instance readwrite.ecf in Eiffel Studio and compile it.

6. In Eiffel Studio or in a command line windows run the built application.

Creating Objects

This section illustrates the creation of objects. The stubclass provides a default constructor which is the
base factory for creating persistent objects.

make person (a _db: MT DATABASE)
-- Default make feature provided as an example
-- You may delete or modify it to suit your needs.
do
make from mtclass (a db.get mtclass ("Person"))
end

db.start transaction ({MT DATABASE}.Mt Min Tran Priority)
create p.make_person (db)

p.set firstname ("John");
p.set lastname ("Smith")

Working with Objects and Values 11

Matisse Eiffel Programmer’s Guide

p.set_age(42)

create a.make_postaladdress (db)

a.set city("Portland")

a.set postalcode ("97201")

p.set address(a)

print ("$NPerson John Smith from Portland created.%$N")

create e.make_employee (db)

e.set firstname ("Jane");
e.set_lastname("Jones")

-- Age is nullable we can leave it unset
create salary.make from string ("85000.00")
e.set salary(salary)

create hiredate.make (2010,10,10)

e.set hiredate (hiredate)

print ("$NEmployee Jane Jones created.$N")

db.commit ()

If your application need to create a large number of objects all at once, we recommend that you use the
preallocate () method defined on MT DaTABASE which provide a substantial performance optimization.

db.start transaction ({MT DATABASE}.Mt Min Tran Priority)
-- Optimize the objects loading

-- Preallocate OIDs so objects can be created in the client workspace
-- without requesting any further information from the server

n := db.preallocate (nb prealloc)
from
i:=1
until
i > nb emp
loop
fname := "Jane"
lname := "Jones"

age := 21 + (i \\ 30)

create salary.make from string ("85000.00")
n := 1 \\ 12

create hiredate.make (2000+n,1+n,1+n)

city := "Portland"

zipcode := "97201"

create e.make_employee (db)

.set firstname (fname) ;

.set lastname (lname)

.set age (age)

.set salary(salary)

.set hiredate (hiredate)

create a.make_postaladdress (db)

a.set city(city)

a.set postalcode (zipcode)

e.set address (a)

print (" Employee #" + i.out + " - " + fname + " " + lname + "

® ® ® ® O

created.%N")

if (i \\ nb_objs per tran) = 0 then
db.commit ()
db.start transaction ({MT DATABASE}.Mt Min Tran Priority)

Working with Objects and Values 12

end

if db.num preallocated () < 2 then
n := db.preallocate (nb prealloc)
end

end

if db.is_transaction_in progress () then
db.commit ()
end

Listing Objects

This section illustrates the enumeration of objects from a class. The create_instance iterator ()
method defined on MTcLASS allows you to enumerate the instances of this class and its subclasses. The
instance_number () method returns the number of instances of this class.

local
db: MT DATABASE
p: PERSON
cnt: INTEGER
personCls: MTCLASS
addressCls: MTCLASS
p_iterl, p_iter2: MT_OBJECT_ITERATOR[PERSON]
Oiiter3: MT_OBJECT_ITERATOR[MTOBJECT]

create db.make (host, dbname)
db.open ()

db.start version access (Void)

personCls := db.get mtclass ("Person");
addressCls := db.get mtclass ("PostalAddress");
cnt := personCls.instance_number ()

print ("$N" + cnt.out + " Person(s) in the database.%N")

cnt addressCls.instance_number ()
print("" + cnt.out + " Address(s) in the database.%N")
print ("$NList all person(s) - Solution 1:%N")

-- Solution 1: Create an iterator from the class
create p_iterl.make_empty iterator ()
personCls.create_instance_ iterator (p iterl, {MT DATABASE}.Mt Max Prefetching)

from

p_iterl.start
until

p_iterl.exhausted
loop

p :=p_ iterl.item
print (" " + p.firstname + " " + p.lastname + " from ")
if (p.address /= Void) then
print (p.address.city)
else

Working with Objects and Values 13

Matisse Eiffel Programmer’s Guide

print ("?2?2")
end

print(" is a "+ p.mtclass.mtname + "SN")
p_iterl.forth

end

p_iterl.close

print ("$NList all person(s) - Solution 2:%N")

-- Solution 2: Create an iterator with the class

create p_iter2.make_class_instance_iterator (db, personCls,
{MT_ DATABASE} .Mt Max Prefetching)

from

p_iter2.start
until

p_iter2.exhausted
loop

p :=p_ iter2.item
print (" " + p.firstname + " " + p.lastname + " from ")
if (p.address /= Void) then
print (p.address.city)
else
print ("??22")
end

print (" is a "+ p.mtclass.mtname + "SN")
p_iter2.forth
end

p_iter2.close

print ("$NList all person(s) - Solution 3:%N")
-- Solution 3: Create an iterator from the class with the MTOBJECT

-- base type
o_iter3 := personCls.instance iterator ({MT_DATABASE}.Mt Max_ Prefetching)
from
o _iter3.start
until
o _iter3.exhausted
loop
p ?= o _iter3.item
if (p /= Void) then
print (" " + p.firstname + " " + p.lastname + " from ")
if (p.address /= Void) then
print (p.address.city)
else
print ("2?22")
end
print (" is a "+ p.mtclass.mtname + "$N")
end
o iter3.forth
end

o iter3.close
db.end version access()

db.close ()

Working with Objects and Values 14

end

The create_own_instance_iterator () method allows you to enumerate the own instances of a class
(excluding its subclasses). The own_instance number () method returns the number of instances of a class
(excluding its subclasses).

local

db: MT DATABASE

p: PERSON

cnt: INTEGER

personCls: MTCLASS

p_iterl, p _iter2: MT_OBJECT_ITERATOR[PERSON]
do

create db.make (host, dbname)
db.open ()

db.start version access(Void)
personCls := db.get mtclass ("Person");

cnt := personCls.own_instance number ()
print ("SN" + cnt.out + " Person(s) (excluding subclasses) in the database.%N")

print ("$NList all person(s) (excluding subclasses) - Solution 1:%N")

-- Solution 1: Create an iterator from the class

create p_iterl.make empty iterator ()

personCls.create_own_instance_iterator (p_iterl,
{MT_DATABASE} .Mt_Max Prefetching)

from
p_iterl.start
until
p_iterl.exhausted
loop
p := p_ iterl.item
print (" " + p.firstname + " " + p.lastname + " from ")
if (p.address /= Void) then
print (p.address.city)
else
print ("??22")
end
print ("™ is a "+ p.mtclass.mtname + "$N")
p_iterl.forth
end

p_iterl.close

print ("$NList all person(s) (excluding subclasses) - Solution 2:%N")

-- Solution 2: Create an iterator with the class

create p_iter2.make class_own_instance_ iterator (db, personCls,
{MT_DATABASE} .Mt_Max Prefetching)

from
p_iter2.start
until
p_iter2.exhausted
loop
p := p_iter2.item
print (" " + p.firstname + " " + p.lastname + " from ")

if (p.address /= Void) then

Working with Objects and Values 15

Matisse Eiffel Programmer’s Guide

print (p.address.city)
else

print ("?222")
end

print (" is a "+ p.mtclass.mtname + "S$N")

p_iter2.forth
end
p_iter2.close

db.end version access()

db.close ()
end

Deleting Objects

This section illustrates the removal of objects. The remove () method delete an object.

// Remove created objects

// NOTE: does not remove the object sub-parts
p.remove ()

To remove an object and its sub-parts, you need to override the deep remove () method in the stubclass
to meet your application needs. For example the implementation of deep remove () in the Person class
that contains a reference to a Postaladdress object is as follows:

-- Overrides MTOBJECT.deep remove () to remove the Address object if any.

deep remove ()
-- Delete the current object and the Address from the database.

local
adrs: POSTALADDRESS
do
adrs := Current.address ()
if adrs /= Void then
-- be careful of cyclic calls
-- when using deep_remove () on navigation
adrs.deep_remove ()
end
remove ()
end

The remove all instances () method defined on MTCLASS delete all the instances of a class.

personCls := db.get mtclass ("Person");
personCls.remove_all instances ()

Working with Objects and Values 16

Comparing Objects

This section illustrates how to compare objects. Persistent objects must be compared with the is_equal ()
method. You can’t compare persistent object with the = operator.

if(pl.is_equal (p2))
print ("Same objects\n") ;

Running the Examples on Values

This example shows how to get and set values for various Matisse data types including Null values, and
how to check if a property of an object is a Null value or not.

This example uses the database created for objects Example. It creates objects, then manipulates its
values in various ways.

Setting and Getting Values

This section illustrates the set, update and read object property values. The stubclass provides a set and a
get method for each property defined in the class.

local
db: MT DATABASE
p: PERSON
e: EMPLOYEE
a: POSTALADDRESS
salary: DECIMAL
hiredate: DATE

-- Setting strings
p.set firstname ("John");
p.set lastname ("Smith")

-- Setting numbers
p.set_age(42)

-- Setting Numerics
create salary.make from string ("85000.00")
e.set salary(salary)

-- Setting Dates

create hiredate.make (2010,10,10)

e.set hiredate (hiredate)

-- Setting an attribute of type int to NULL
p.set null(p.get age attribute ())

end

Working with Objects and Values 17

Matisse Eiffel Programmer’s Guide

-- Getting String values

print ("$NComment:" + e.comment () + "SN")
-- suppresses output if no value set
if not e.is_age null () then
print ("Age:" + e.age ().out + "SN")
else
print ("Age: NULL")
if e.is_age_default_value () then
print (" (default value)")
end
print ("SN")

end

Removing Values

This section illustrates the removal of object property values. Removing the value of an attribute will
return the attribute to its default value.

-- Removing value returns attribute to default
e.remove_age () ;

e.remove_dependents () ;

-- Getting again to show effect of removing value

print ("$NComment:" + e.comment () + "S%N")
if not e.is_age null () then

print ("Age:" + e.age ().out + "SN")
else

print ("Age: NULL")

if e.is_age_default value () then

print (" (default value)")
end
print ("SN")

end

Streaming Values

This section illustrates the streaming of blob-type values (MT BYTES, MT AUDIO, MT IMAGE,

MT viDEO). The stubclass provides streaming methods (set photo elements (), get photo elements
()) for each blob-type property defined in the class. It also provides a method (get _photo_size()) to
retrieve the blob size without reading it.

Retrieving an Object from its Oid

This section illustrates a very commonly used feature in the binding. Using the Object Identifier (OID) is
very efficient for retrieving one object from the database. The example below illustrates how to view an
image stored into the database using the object Identifier to quickly retrieve the object.

Working with Objects and Values 18

local

db: MT DATABASE

p: PERSON

buffer: ARRAY [NATURAL 8]
person oid: INTEGER

create db.make (host, dbname)
db.open ()

db.start version access(Void)

p ?= db.upcast (person oid)
buffer := p.photo ()

db.end version access()

db.close ()

Working with Objects and Values

19

Matisse Eiffel Programmer’s Guide

4 Working with Relationships

One of the major advantages of the object interface of the Matisse Eiffel binding is the ability to navigate
from one object to another through a relationship defined between them. Relationship navigation is as
easy as accessing an object property.

Running the Examples on Relationships

This example creates several objects, then manipulates the relationships among them in various ways.

1.

2,

Follow the instructions in Before Running the Examples on page 5.
Change to the retrieve directory (under examples).

Load examples.odl into the database. From the Enterprise Manager, select the database ‘example’
and right click on ‘Schema->Import ODL Schema’, then select retrieve/examples.odl for this
demo.

Generate Eiffel class files:
mt sdl stubgen --lang eiffel -f examples.odl
Open the Eiffel project for instance rshp.ecf in Eiffel Studio and compile it.

In Eiffel Studio or in a command line windows run the built application.

Setting and Getting Relationship Elements

This section illustrates the set, update and get object relationship values. The stubclass provides a set and
a get method for each relationship defined in the class.

local

db: MT DATABASE

cl,c2: PERSON

ml,m2: MANAGER

e: EMPLOYEE

children: ARRAY [PERSON]
do
create ml.make manager (db)

-- Set a relationship

-- Need to report to someone since the relationship
-- cardinality minimum is set to 1
ml.set_reportsto(ml);

create m2.make manager (db)

-- Set a relationship
m2.set_reportsto (ml);

create e.make employee (db)
-- Set a relationship

Working with Relationships 20

e.set_reportsto (m2);

-- Set a relationship
ml.set assistant(e);
-- Set a relationship
m2.set_assistant(e);

create cl.make person (db)
create c2.make person (db)
create children.make (1, 2)
children.put (cl, 1)
children.put (c2, 2)

-—- Set successors

ml.set _children (children);

-- father is automatically updated

print (" " + cl.firstname () +
" is " + cl.father().firstname() + "'s child %N");
print (" " + c2.firstname () +

" is " + c2.father().firstname() + "'s child %N");

Adding and Removing Relationship Elements

This section illustrates the adding and removing of relationship elements. The stubclass provides a
append, a remove and a clear method for each relationship defined in the class.

create c3.make person (db)

-- add successors
m.append_children (c3)

-—- remove sSuUCCeSsOors
m.remove_children (c3)

-- clearing all successors (this only breaks links, it does

-- not remove objects)
m.clear_children();

Listing Relationship Elements

This section illustrates the listing of relationship elements for one-to-many relationships. The stubclass
provides an iterator method for each one-to-many relationship defined in the class.

-- Iterate when the relationship is large is always more efficient

iter := m.children_ iterator ()
from

iter.start
until

iter.exhausted

Working with Relationships 21

Matisse Eiffel Programmer’s Guide

loop
c := iter.item

print (" " + c.firstname + " " + c.lastname + "%N")

iter.forth
end
iter.close

Counting Relationship Elements

This section illustrates the counting of relationship elements for one-to-many relationships. The stubclass
provides an get size method for each one-to-many relationship defined in the class.

-- Get the relationship size without loading the Java objects
-- which is the fast way to get the size

cnt := m.children_size()

print (" " + m.firstname() + " has " + cnt.out + " children");

-- an alternative to get the relationship size

-- but the Eiffel objects are loaded before you can get the count
cnt := m.children () .count

print (" " + m.firstname() + " has " + cnt.out + " children");

Working with Relationships 22

5 Working with Indexes

While indexes are used mostly by the SQL query optimizer to speed up queries, the Matisse Eiffel
binding also provides the index query APIs to look up objects based on a key value(s). The stubclass
defines both lookup methods and iterator methods for each index defined on the class.

Running the Examples on Indexes

Using the personName index, it checks whether the database contains an entry for a person matching the
specified name. The application will list the names in the database, indicate whether the specified name
was found, and return results within a sample range (defined in the source) using an iterator.

1. Follow the instructions in Before Running the Examples on page 5.
2. Change to the retrieve directory (under examples).

3. Load examples.odl into the database. From the Enterprise Manager, select the database ‘example’
and right click on ‘Schema->Import ODL Schema’, then select retrieve/examples.odl for this
demo.

4. Generate Eiffel class files:
mt sdl stubgen --lang eiffel -f examples.odl
5. Open the Eiffel project for instance index.ecf in Eiffel Studio and compile it.

6. In Eiffel Studio or in a command line windows run the built application.

Index Lookup

This section illustrates retrieving objects from an index. The stubclass provides accessors to the name of
each index defined on the class.

1. Lookup

local
db: MT DATABASE
f name, 1 name: STRING
p: PERSON
filter: MTCLASS
idxCls: MTINDEX
key: ARRAY[ANY]

do
idxCls := db.get_mtindex ({PERSON}.personname name) ;
f name := "John"
1 name := "Murray"
print ("$NLooking for Person '" + f name + " " + 1 name + "'3%N")

create key.make (1, 2)
key.put (1 name, 1)
key.put (f name, 2)

Working with Indexes 23

Matisse Eiffel Programmer’s Guide

p ?= i1idxCls.lookup (key, Void)

if (p /= Void) then

print (" found exactly one Person: "+ p.firstname + "S%N")

else
print (" nobody found%N")
end
end
2. Iterate
local
db: MT DATABASE
i: INTEGER
from f name, from 1 name, to f name, to 1 name: STRING
p: PERSON
idxCls: MTINDEX
start key, end key: ARRAY[ANY]
p iter: MT OBJECT ITERATOR[PERSON]
0 _iter: MT OBJECT ITERATOR[MTOBJECT]
do

idxCls := db.get mtindex ({PERSON}.personname_name) ;

from f name := "Fred"

from 1 name := "Jones"

to f name := "John"

to 1 name := "Murray"

print ("$NLookup from Person '"
+ from f name + " " + from 1 name + "' to '"
+ to f name + " " + to 1 name + "'3N")

create start key.make(l, 2)
start key.put(from 1 name, 1)
start key.put (from f name, 2)

create end key.make(1l, 2)
end key.put(to 1 name, 1)
end key.put (to f name, 2)

print ("Solution 1%N")

-- Solution 1: Create an iterator from the index

create p_iter.make_empty iterator ()
idxCls.create_iterator (p iter, start key, end key, Void,

{MT_DATABASE} .Mt_Max Prefetching)

{MTINDEX} .Mt _Direct,

i:=0
from
p_iter.start
until
p_iter.exhausted
loop
p := p_iter.item
print (" " + p.firstname + " " + p.lastname + "SN")
i:=1+1
p_iter.forth
end
p _iter.close
print("" + i.out + " Person(s) found$%N")

Working with Indexes

24

print ("Solution 2%N")
-- Solution 2: Create an iterator from the index with the MTOBJECT

-- base type
o iter := idxCls.iterator (start key, end key, Void, {MTINDEX}.Mt Direct,
{MT DATABASE}.Mt_Max Prefetching)
i:=0
from
o iter.start
until
o iter.exhausted
loop
p ?= o _iter.item
if (p /= Void) then
print (" " + p.firstname + " " + p.lastname + "%N")
i:=1+1
end
o iter.forth
end

O _iter.close

Index Lookup Count

This section illustrates retrieving the object count for a matching index key. The object number()
method is defined on the MTINDEX class.

local

db: MT DATABASE

f name, 1 name: STRING
i: INTEGER

filter: MTCLASS
idxCls: MTINDEX

key: ARRAY[ANY]

idxCls := db.get_mtindex ({PERSON}.personname name) ;

f name := "John"

1 name := "Murray"

print ("$NLooking for Person '" + f name + " " + 1 name + "'SN")

create key.make (1, 2)

key.put (1 name, 1)

key.put (f name, 2)

i := idxCls.object_number (key, Void)

print ("™ " + i.out + " objects retrieved%N")

Index Entries Count

This section illustrates retrieving the number of entries in an index. The index_entries_ number()
method is defined on the MTINDEX class.

Working with Indexes 25

Matisse Eiffel Programmer’s Guide

local
db: MT DATABASE
i: INTEGER
idxCls: MTINDEX
do
idxCls := db.get mtindex ({PERSON}.personname name) ;
i := idxCls.index_entries_number ()
print (""" + i.out + " entries in the index%N")

Working with Indexes 26

6 Working with Entry-Point Dictionaries

An entry-point dictionary is an indexing structure containing keywords derived from a value, which is
especially useful for full-text indexing. While the entry-point dictionary can be used with SQL query
using ENTRY POINT keyword, the object interface of the Matisse Eiffel binding also provides APIs to
directly retrieve objects using the entry-point dictionaries.

Running the Examples on Dictionaries

Using the commentDict entry-point dictionary, the example retrieves the Person objects in the database
with comments fields containing a specified character string.

1. Follow the instructions in Before Running the Examples on page 5.
2. Change to the retrieve directory (under examples).

3. Load examples.odl into the database. From the Enterprise Manager, select the database ‘example’
and right click on ‘Schema->Import ODL Schema’, then select retrieve/examples.odl for this
demo.

4. Generate Eiffel class files:
mt sdl stubgen --lang eiffel -f examples.odl
5. Open the Eiffel project for instance epdict.ecf in Eiffel Studio and compile it.

6. In Eiffel Studio or in a command line windows run the built application.

Entry-Point Dictionary Lookup

This section illustrates retrieving objects from an entry-point dictionary. The stubclass provides access to
lookup methods and iterator methods for each entry-point dictionary defined on the class.

1. Lookup

local
db: MT DATABASE
search string: STRING
p: PERSON
epdictCls: MTENTRYPOINTDICTIONARY

do
epdictCls := db.get_mtentrypointdictionary ({PERSON}.commentdict name) ;
search string := "knees"
print ("$NLooking for one Person with '" + search string + "' in the 'comment'
text$N")

p ?= epdictCls.lookup (search string, Void)

if (p /= Void) then
print (" found exactly one Person: "+ p.firstname + "S%N")

Working with Entry-Point Dictionaries 27

Matisse Eiffel Programmer’s Guide

else
print (" nobody found$N")
end
end
2. [terate
local
db: MT DATABASE
i: INTEGER
search string: STRING
p: PERSON
epdictCls: MTENTRYPOINTDICTIONARY
p_iter: MT_OBJECT_ITERATOR [PERSON]
o_iter: MT_OBJECT ITERATOR[MTOBJECT]
do
epdictCls := db.get mtentrypointdictionary ({PERSON}.commentdict name);
search string := "knees"
print ("$NLooking for Persons with '" + search string + "' in the 'comment'
text%N")

print ("Solution 1%N")

-- Solution 1: Create an iterator from the EP dict

create p_iter.make_empty iterator ()

epdictCls.create_iterator (p iter, search_string, Void,
{MT_DATABASE} .Mt_Max Prefetching)

i:=0
from
p_iter.start
until
p_iter.exhausted
loop
p := p_iter.item
print (" " + p.firstname + " " + p.lastname + "%N")
i:=1+1
p_iter.forth
end
p_iter.close
print ("" + i.out + " Person(s) with 'comment' containing '"+ search string +
"YSN")
print ("Solution 2%N")
-— Solution 2: Create an iterator from the EP dict with the MTOBJECT
-- base type
o iter := epdictCls.iterator (search string, Void,
{MT DATABASE}.Mt_Max Prefetching)
i:=0
from
o iter.start
until
o iter.exhausted
loop

p ?= o _iter.item

if (p /= Void) then
print (" " + p.firstname + " " + p.lastname + "SN")
i::=1i+1

Working with Entry-Point Dictionaries 28

end
o _iter.forth
end
o _iter.close
end

Entry-Point Dictionary Lookup Count

This section illustrates retrieving the object count for a matching entry-point key. The object number()
method is defined on the MTENTRYPOINTDICTIONARY class.

local
db: MT DATABASE
i: INTEGER
search string: STRING
epdictCls: MTENTRYPOINTDICTIONARY
do
epdictCls := db.get_mtentrypointdictionary ({PERSON}.commentdict name) ;
search string := "knees"
print ("$NLooking for Persons with '" + search string + "' in the 'comment'
text3N")
i := epdictCls.object number (search_string, Void)
print ("" + i.out + " Person(s) with 'comment' containing '"+ search string +
"IEN")
end

Working with Entry-Point Dictionaries 29

Matisse Eiffel Programmer’s Guide

7 Working with SQL

Running the Examples on SQL

This sample program demonstrates how to manipulate objects via the Matisse Eiffel SQL interface. It
creates objects (Person Employee and Manager) and it executes SELECT statements to retrieve objects.
It also shows how to create SQL methods and execute them.

1.

2,

Follow the instructions in Before Running the Examples on page 5.
Change to the sql directory in your installation (under examples).

Load examples.odl into the database. From the Enterprise Manager, select the database ‘example’
and right click on ‘Schema->Import ODL Schema’, then select sq1/examples.odl for this demo.

Generate Eiffel class files:
mt sdl stubgen --lang eiffel -f examples.odl
Open the Eiffel project for instance sq1.ecf in Eiffel Studio and compile it.

In Eiffel Studio or in a command line windows run the built application.

Executing a SQL Statement

After you open a connection to a Matisse database, you can execute statements (i.e., SQL statements or
SQL methods) using a MT_STATEMENT object.You can create a statement object for a specific
MT_DATABASE object using the create_statement method.

You can create more specific statement objects for different purposes:

MT_STATEMENT - It is specifically used for the SQL statements where you don't need to pass any value
as a parameter

MT_PREPARED_STATEMENT - It is a subclass of the statement class. The main difference is that, unlike
the statement class, prepared statement is complied and optimized once and can be used multiple
times by setting different parameter values.

MT_CALLABLE_STATEMENT - It provides a way to call a stored procedure on the server from a Eiffel
program. Callable statements also need to be prepared first, and then their parameters are set using
the set methods.

MT_RESULT_ SET - [t represents a table of data, which is usually generated by executing a statement
that queries the database. A ResultSet object maintains a cursor pointing to its current row of data.

NOTE: With the Matisse Eiffel SQL interface you usually don’t need to use the
Eiffel stub classes unless you want to retrieve objects from a SQL
statement or from the execution of a SQL method.

Working with SQL 30

Creating Objects

You can also create objects into the database without the Eiffel stub classes. The following code
demonstrates how to create multiple objects of the same class using a prepared statement.

cmd text := "INSERT INTO Person (FirstName, LastName, Age) VALUES (2, 2, ?)"
pstmt := db.prepare_ statement (cmd_text)

—-- Set parameters
pstmt.set_string(l, "James")
pstmt.set_string (2, "Watson")
pstmt.set_int (3, 75)

print ("Executing: " + pstmt.stmt_text() + "SN")

—-— Execute the INSERT statement
inserted := pstmt.execute_ update ()

print ("Inserted: " + inserted.out + "SN")
-- Set parameters for the next execution
pstmt.set_string(l, "Elizabeth")
pstmt.set_string (2, "Watson")

pstmt.set null(3);

print ("Executing: " + pstmt.stmt text () + "%N")

-- Execute the INSERT statement with new parameters

inserted := pstmt.execute_ update ()
print ("Inserted: " + inserted.out + "SN")
—-— Clean up

pstmt.close ()

Updating Objects

You can also create objects into the database without the Eiffel stub classes. The following code
demonstrates how to create multiple objects of the same class using a prepared statement.

// Create an instance of Statement
stmt := db.create_statement ()

// Set the relationship 'Spouse' between these two Person objects
commandText := "SELECT REF (p) FROM Person p WHERE FirstName = 'James' AND LastName =
'Watson' INTO pl;"
stmt->execute (commandText)

commandText := "UPDATE Person SET Spouse = pl WHERE FirstName = 'Elizabeth' AND
LastName = 'Watson';"
inserted := $stmt.execute_update (commandText)

// Clean up
stmt.close ()

Working with SQL 31

Matisse Eiffel Programmer’s Guide

Retrieving Values

You use the Resultset object, which is returned by the executeQuery method, to retrieve values or
objects from the database. Use the next method combined with the appropriate getstring, getInt, etc.
methods to access each row in the result.

The following code demonstrates how to retrieve string and integer values from a Resultset object after
executing a SELECT statement.

cmd text := "SELECT FirstName, LastName, Spouse.FirstName AS Spouse, Age FROM Person
WHERE LastName = ? LIMIT 10;"
pstmt := db.prepare_ statement (cmd_text)

—-- Set parameters
pstmt.set_string(l, "Watson")

print ("Executing: " + pstmt.stmt_text() + "3N")

result set := pstmt.execute_query ()

colnum := result_set.column_count ()

print ("Total selected: " + result set.total num objects().out + "3%N")
print ("Total qualified: " + result set.total num qualified().out + "%N")
print ("Total columns: " 4+ colnum.out +"%N")

-— List column names
from

until
i > colnum

loop
print (result_ set.column_name (i) + " ")
i:=1+1

end

rint ("%N") ;

print ("---%N");

-- List rows

from
result set.start
until
result set.exhausted
loop
fname := result_set.get_string(l)
Iname := result set.get string(2)
sfname := result set.get string(3)
if not result set.is_null (4) then
age := result set.get_ integer (4).out
else
age := "NULL"
end
print (fname + " , " 4+ lname + " , " + sfname + " , " + age + "SN");

result set.forth
end

Working with SQL 32

result set.close ()

pstmt.close ()

Retrieving Objects from a SELECT statement

You can retrieve Eiffel objects directly from the database without using the Object-Relational mapping
technique. This method eliminates the unnecessary complexity in your application, i.e., O/R mapping
layer, and improves your application performance and maintenance.

To retrieve objects, use REF in the select-list of the query statement and the getobject method returns
an object. The following code example shows how to retrieve Person objects from a ResultSet object.

—-— create s SQL statement

stmt := db.create_statement ()
query := "SELECT REF (p) FROM Person p WHERE LastName = 'Watson';"
result_set := stmt.execute_query (query)
print ("Total selected: " + result set.total_num objects().out + "%N")
print ("Total qualified: " + result set.total num qualified().out + "SN")
print ("Total columns: " + result_set.column_count ().out +"3%N")
from

result set.start
until

result set.exhausted
loop

p ?= result_set.get_object (1)

print (" " + p.mtclass () . .mtname() + " " + p.firstname() + " " + p.lastname () +
" married to " + p.spouse().firstname() + "SN");

result set.forth
end

result set.close ()

stmt.close ()

Retrieving Objects from a Block Statement

You can also retrieve a collection of Eiffel objects directly from the database by executing a SQL block
statement.

The get_object method defined on a MT_CALLABLE STATEMENT is used to return one object as well as an
object collection. The following code example shows how to retrieve a collection of Person objects
from a MT_CALLABLE_STATEMENT.

Working with SQL 33

Matisse Eiffel Programmer’s Guide

Executing DDL Statements

You can also create schema objects from a Eiffel application via SQL.

Creating a Class

You can create schema objects using the executeUpdate Method as long as the transaction is started in
the DATA DEFINITION mode.

create db.make (host, dbname)

db.open ()

-- In order to execute DDL statements, the transaction needs to be
-- started in the "Data Definition" mode

db.set_data_access_mode ({MT_DATABASE}.Mt_Data Definition)

db.start transaction()

-- Execute the DDL statement

stmt := db.create_statement ()

stmt.execute_update ("CREATE CLASS Manager UNDER Employee (bonus INTEGER)")
stmt.close ()

db.commit ()

Creating a SQL Method

Creating a schema object using the execute Method does not require to start a transaction. A transaction
will be automatically started in the DATA DEFINITION mode.

create db.make (host, dbname)
db.open ()
stmt := db.create_statement ()

-- The first method returns the number of Person objects which have a specified last
name
commandText :=
"CREATE STATIC METHOD CountByLName (lname STRING) \n"+
"RETURNS INTEGER\n"+
"FOR Person\n"+
"BEGIN\n"+
" DECLARE cnt INTEGER;\n"+
" SELECT COUNT (*) INTO cnt FROM Person WHERE LastName = lname; \n"+
" RETURN cnt;\n"+
"END; "

stmt .execute (commandText)
stmt.close ()
db.commit ()

Executing SQL Methods

You can call a SQL method using the CALL syntax, i.e., simply passing the SQL method name followed
by its arguments as an SQL statement. You can also use the Callable Statement object, which allows you
to explicitly specify the method’s parameters.

Working with SQL 34

Executing a Method returning a Value

The following program code shows how to call the SQL method CountByLName of the Person class.

-- Specify the stored method. we call a static method,
-- the name is consisted of class name and method name.
—-— Use CALL syntax to call the method

commandText := "CALL Person::CountByLName (?);"

-- Create an instance of CallableStatement
stmt = db.prepare call (commandText)

—-- Set parameters
stmt.set_string(l, "Watson");

-- Execute the stored method
stmt.execute ()

-—- Get the returned value
count := stmt.get_integer (0)

-- Print it
print (count.out “objects found%N")

-— Clean up
stmt.close ()

Executing a Method returning an Object

The following program code shows how to call the SQL method FindByName of the Person class.

-- Specify the SQL method. Since we call a static method,

—-— the name is consisted of class name and method name.

-- Use CALL syntax to call the method

commandText := "CALL Person::FindByName ('Watson', 'James');"

-- Create an instance of CallableStatement
stmt := db.prepare_ call (commandText)

-- Execute the stored method
stmt.execute ()

—-— Get the returned value
p ?= stmt.get_object(0)

// Print it
if p /= Void then

print ("Found: “ + p.lastname() + “ ™ + p.firstname() + “%N")
else

print ("no matching object found%N")
-- Clean up

stmt.close ()

Working with SQL 35

Matisse Eiffel Programmer’s Guide
Catching a Method Execution Error

The following program code shows how to retrieve the execution stack trace of a SQL method when an
eITor OCCurs.

Deleting Objects

You can delete objects from the database with a DELETE statement as follows:

db.start transaction ({MT DATABASE}.Mt Min Tran Priority)

print ("$NDeleting all Persons...%N");

—-— execute an update statement

query := "DELETE FROM Person"

cnt := stmt.execute_update (query)

stmt_type := stmt.statement_type ()

print (" '" + stmt.stmt_type_to_string(stmt_type) + "' statement executed affecting

" + cnt.out + " objects in the database.%N");
stmt.close ()

db.commit ()

Working with SQL 36

8 Working with Class Reflection

This section illustrates Matisse Reflection mechanism. This example shows how to manipulate persistent
objects without having to create the corresponding Eiffel stubclass. It also presents how to discover all
the object properties.

Running the Examples on Reflection

This example creates several objects, then manipulates them to illustrate Matisse Reflection mechanism.
1. Follow the instructions in Before Running the Examples on page 5.
2. Change to the reflection directory (under examples).

3. Load examples.odl into the database. From the Enterprise Manager, select the database ‘example’
and right click on ‘Schema->Import ODL Schema’, then select reflection/examples.odl for this
demo.

4. Open the Eiffel project for instance reflection.ect in Eiffel Studio and compile it.

5. In Eiffel Studio or in a command line windows run the built application.

Creating Objects

This example shows how to create persistent objects without the corresponding Eiffel stubclass. The
method get mt<xyz>() defined on all Matisse Meta-Schema classes (i.e. MTCLASS, MTATTRIBUTE, etc.)
allows you to access to the schema descriptor necessary to create objects. Each object is an instance of
the mToBJECT base class. The MmToBJECT class holds all the methods to update the object properties
(attribute and relationships (i.e. set _string(), set successors(), etc.).

local
factory: MT CORE OBJECT FACTORY
db: MT DATABASE
personCls, employeeCls, managerCls: MTCLASS
fnAtt, lnAtt, cgAtt, hdAtt, slAtt: MTATTRIBUTE
tmRshp: MTRELATIONSHIP
p, e, m: MTOBJECT
salary: DECIMAL
hiredate: DATE
tmbrs: ARRAY [MTOBJECT]

—-- Use the MT CORE OBJECT FACTORY since there is need for
-- dynamic object creation, it is all MTOBJECT

create factory.make

create db.make_factory (host, dbname, factory)

db.open ()

db.start transaction ({MT DATABASE}.Mt Min Tran Priority)

personCls := db.get _mtclass ("Person");
employeeCls := db.get mtclass ("Employee");

Working with Class Reflection 37

Matisse Eiffel Programmer’s Guide

managerCls := db.get mtclass ("Manager");

fnAtt := db.get mtattribute ("FirstName", personCls)
InAtt := db.get mtattribute ("LastName", personCls)
cgAtt := db.get mtattribute("collegeGrad", personCls)
hdAtt := db.get mtattribute("hireDate", employeeCls)
slAtt := db.get mtattribute ("salary", employeeCls)
tmRshp := db.get_mtrelationship ("team", managerCls)
print ("$NCreating one Person...3%N")

create p.make_from mtclass (personCls)
p.set_string (fnAtt, "John");

p.set string(lnAtt, "Smith")
p.set_boolean (cgAtt, False)

create e.make_from mtclass (employeeCls)
e.set string(fnAtt, "James");

e.set string(lnAtt, "Roberts")

e.set boolean(cgAtt, True)

create salary.make from string ("5123.25")
e.set _numeric(slAtt, salary)

create hiredate.make (2009,09,09)
e.set_date (hdAtt, hiredate)

create m.make_ from mtclass (managerCls)
m.set string(fnAtt, "Andy");

m.set string(lnAtt, "Brown")

m.set boolean(cgAtt, True)

create salary.make from string ("5123.25")
m.set numeric(slAtt, salary)

create hiredate.make (2008,08,08)

m.set date(hdAtt, hiredate)

create tmbrs.make(1,2)

tmbrs.put (m, 1)

tmbrs.put (e, 2)

m.set_successors (tmRshp, tmbrs)

db.commit ()

db.close ()
end

Listing Objects

This example shows how to list persistent objects without the corresponding Eiffel stubclass. The
instance_iterator () method defined on the MTCLASS object allows you to access all instances defined
on the class.

local
factory: MT CORE_OBJECT_ FACTORY
db: MT_DATABASE
cnt: INTEGER
personCls: MTCLASS
fnAtt, 1nAtt, cgAtt: MTATTRIBUTE
o_iter: MT OBJECT ITERATOR[MTOBJECT]
p: MTOBJECT
do
—-- Use the MT CORE OBJECT FACTORY since there is need for

Working with Class Reflection 38

-- dynamic object creation, it is all MTOBJECT
create factory.make

create db.make_factory (host, dbname, factory)
db.open ()

db.start version access (Void)

personCls := db.get_mtclass("Person");

fnAtt := db.get mtattribute ("FirstName", personCls)
InAtt := db.get mtattribute ("LastName", personCls)
cgAtt := db.get mtattribute("collegeGrad", personCls)
cnt := personCls.instance number ()

print ("SN" + cnt.out + " Person(s) in the database.$%N")

o_iter := personCls.instance_iterator ({MT_DATABASE}.Mt Max Prefetching)

from
o iter.start

until
o _iter.exhausted

loop
p := o iter.item
print (" " + p.mtclass.mtname + " #" + p.oid.out)
print (" - " + p.get_string(fnAtt) + " " + p.get string(lnAtt))
print (" collegeGrad="+ p.get_boolean (cgAtt).out + "%N")
o iter.forth

end

o iter.close
db.end_version_access()

db.close ()
end

Working with Indexes

This example shows how to retrieve persistent objects from an index. The MmTINDEX class holds all the
methods retrieves objects from an index key.

personCls := db.get _mtclass("Person");
fnAtt := db.get mtattribute ("FirstName", personCls)
1nAtt := db.get_mtattribute("LastName", personCls)

cgAtt := db.get_mtattribute ("collegeGrad", personCls)
idxCls := db.get mtindex ("personName") ;

-— Get the number of entries in the index

i := idxCls.index_entries_number ()

print("" + i.out + " entries in the index%N")

f name := "James"

1 name := "Roberts"

print ("$NLooking for Person '" + f name + " " + 1 name + "'S%N")

Working with Class Reflection 39

Matisse Eiffel Programmer’s Guide

-— Create the key
create key.make(1l, 2)
key.put (1 name, 1)
key.put (f name, 2)

-- lookup for the number of objects matching the key
i := idxCls.object number (key, Void)

print("™ " + i.out + " objects retrieved%N")

if i > 1 then

o iter := idxCls.iterator (key, key, Void, {MTINDEX}.Mt Direct,
{MT_DATABASE} .Mt_Max Prefetching)
i:=0
from
o iter.start
until
o iter.exhausted
loop
p := o _iter.item
print (" found " + p.mtclass.mtname + " #" + p.oid.out)
print (" - " + p.get_string(fnAtt) + " " + p.get_string(lnAtt))
print (" collegeGrad="+ p.get_boolean (cgAtt).out + "SN")
i =1+ 1
o iter.forth
end
o iter.close
print("" + i.out + " Person(s) found$sN")
else
p := 1dxCls.lookup (key, Void)
if (p /= Void) then
print (" found exactly one Person: "+ p.get string(fnAtt) + " " +
p.get string(lnAtt) + "3%N")
else
print (" nobody found$%N")
end
end

Working with Entry Point Dictionaries

This example shows how to retrieve persistent objects from an Entry Point Dictionary. The
MTENTRYPOINTDICTIONARY class holds the methods to retrieve objects from a string key.

personCls := db.get_mtclass("Person");

fnAtt := db.get mtattribute ("FirstName", personCls)
InAtt := db.get mtattribute ("LastName", personCls)
cgAtt := db.get mtattribute ("collegeGrad", personCls)

epdictCls := db.get_mtentrypointdictionary ("collegeGradDict");

Working with Class Reflection 40

search string := "True"
print ("$NLooking for Persons with CollegeGrad=" + search string + "S%N")

1 := epdictCls.object number (search_string, Void)

if 1 > 1 then
O _iter := epdictCls.iterator (search string, Void,
{MT_DATABASE} .Mt_Max Prefetching)
i:=0
from
o iter.start
until
o _iter.exhausted
loop
p ?= o _iter.item

print (" found exactly one Person:" + " #" + p.oid.out)
print (" - " + p.get_string(fnAtt) + " " + p.get_string(lnAtt))
print (" collegeGrad="+ p.get_boolean (cgAtt).out + "SN")

i =1+ 1

o iter.forth

end

o iter.close

print ("" + i.out + " Person(s) with collegeGrad="+ search string + "%N")
else

p := epdictCls.lookup (search string, Void)

if (p /= Void) then

print (" found exactly one Person:" + " #" + p.oid.out)
print (" - " + p.get string(fnAtt) + " " + p.get string(lnAtt))
print (" collegeGrad="+ p.get boolean(cgAtt) .out + "3N")

else
print (" nobody found$N")

end
end

Discovering Object Properties

This example shows how to list the properties directly from an object. The mToBJECT class holds the
attributes_iterator () method, relationships_iterator () method and
inverse_relationships_iterator () method which enumerate the object properties.

personCls := db.get mtclass ("Person");
o iter := personCls.instance iterator ({MT DATABASE}.Mt Max Prefetching)
from
o _iter.start
until
o _iter.exhausted
loop
p := o iter.item
print ("- " + p.mtclass.mtname + " #" + p.oid.out + "%N")
print (" Attributes:%N")
att_iter := p.attributes_iterator()

Working with Class Reflection 41

from
att iter.start
until
att iter.exhausted
loop
att := att iter.item
att type := att.get_mttype ()
val type := p.get type (att)

Matisse Eiffel Programmer’s Guide

print (" " + att.mtname + " (type=" + att type.out + "): ")

if val _type = {MITYPE}.Mt Null
print ("MT NULL")
else

then

print (p.get_value (att) .out)

end

print (" (valtype=" + val type.out + ")")

print ("SN")
att iter.forth
end
att iter.close

print (" Relationships:%N")

rel_iter := p.relationships_iterator()

from

rel iter.start
until

rel iter.exhausted
loop

rel := rel iter.item

print (" " + rel.mtname + ":
rel iter.forth

end
rel iter.close

" + p.get_successor_size(rel) .out + "3%N")

print (" Inverse Relationships:%N")
rel_iter := p.inverse_relationships_iterator()
from
rel iter.start
until
rel iter.exhausted
loop
rel := rel iter.item
print (" " + rel.mtname + ": " + p.get_successor_size(rel) .out + "3%N")

rel iter.forth
end
rel iter.close

o _iter.forth
end
o iter.close

Working with Class Reflection

42

Adding Classes

This example shows how to add a new class to the database schema. The connection needs to be open in
the DDL ({MT_DATABASE} .Mt Data Definition) mode. Then you need to create instances of MTCLASS,
MTATTRIBUTE and MTRELATTONSHIP and connect them together.

—-- open connection in DDL mode
db.set_data_access_mode ({MT_DATABASE} .Mt Data_Definition)

db.open ()

db.start_transaction ({MT_DATABASE}.Mt Min Tran Priority)
personCls := db.get _mtclass ("Person");

-- Create new attributes

create cAtt.make mtattribute (db, "City", {MTTYPE}.Mt_String)
create pcAtt.make_mtattribute (db, "PostalCode", {MTTYPE}.Mt String)
-— Create a new Class

create attrs.make (1, 2)

attrs.force (cAtt, 1)

attrs.force (pcAtt, 2)

create addrCls.make mtclass_full (db, "PostalAddress", attrs, Void)
-- List the new PostalAddress class to Person

create ad rel.make mtrelationship (db, "Address", addrCls, 0, 1)

personCls.addcls_ﬁzrelationship(adirel);

db.commit ()

Deleting Objects

This example shows how to delete persistent objects. The MToBJECT class holds remove () and
deep remove (). Note that on MTOBJECT.deep remove () does not execute any cascading delete but only
CaHSremove(L

db.start_ transaction ({MT_DATABASE}.Mt Min Tran Priority)
personCls := db.get mtclass ("Person");

cnt := personCls.instance number ()
print ("SN" + cnt.out + " Person(s) in the database.%N")

print ("%NDeleting all Persons...%N")
personCls.remove_all instances ()

cnt := personCls.instance number ()
print ("SN" + cnt.out + " Person(s) in the database.%N")

db.commit ()

Working with Class Reflection 43

Matisse Eiffel Programmer’s Guide

Removing Classes

This example shows how to remove a class for the database schema. The deep_remove () method defined
on MTcLASS will delete the class and its properties and indexes. The connection needs to be open in
{MT_DATABASE} .Mt Data Definition mode.

—-- open connection in DDL mode
db.set_data_access_mode ({MT_DATABASE} .Mt Data_Definition)

db.open ()

db.start_transaction ({MT_DATABASE}.Mt Min Tran Priority)
addrCls := db.get_mtclass("PostalAddress");
addrCls.deep_remove ()

db.commit ()

Working with Class Reflection 44

9 Working with Database Events

This section illustrates Matisse Event Notification mechanism. The sample application is divided in two
sections. The first section is event selection and notification. The second section is event registration and
event handling.

Running the Events Example

This example creates several events, then manipulates them to illustrate the Event Notification
mechanism.

1. Follow the instructions in Before Running the Examples on page 5.
2. Change to the events directory (under examples).
3. Open the Eiffel project for instance events.ecf in Eiffel Studio and compile it.

4. In Eiffel Studio or in a command line windows run the built application.

Events Subscription

This section illustrates event registration and event handling. Matisse provides the Mt _EVENT class to
manage database events. You can subscribe up to 32 events ({MT_EVENT}.Mt Eventl to
{MT_EVENT} .Mt Event32) and then wait for the events to be triggered.

Temperature Changes Evt := {MT_EVENT}.Mt Eventl
Rainfall Changes_Evt := {MT_EVENT}.Mt_Event2
Himidity Changes_Evt := {MT_EVENT}.Mt Event3
Windspeed_Changes_Evt := {MT_EVENT}.Mt_Event4

create db.make (host, dbname)
db.open ()

create subscriber.make (db)

-- Subscribe to all 4 events

event set := Temperature Changes Evt

event set := event set + Rainfall Changes Evt
event set := event set + Himidity Changes Evt
event set := event set + Windspeed Changes Evt
—-- Subscribe

subscriber.subscribe (event set)

-- Wait 1000 ms for events to be triggered
-- return 0 if not event is triggered until the timeout is reached

triggered events := subscriber.wait(1000)
if triggered events /= 0 then

print ("Events triggered: " + triggered events.out + "%N")
else

print ("No events triggered$%N")
end

Working with Database Events 45

Matisse Eiffel Programmer’s Guide

—-— Unsubscribe to all 4 events
subscriber.unsubscribe ()

db.close ()

Events Notification

This section illustrates event selection and notification.

Temperature Changes Evt := {MT_EVENT}.Mt Eventl
Rainfall Changes_Evt := {MT_EVENT}.Mt_Event2
Himidity Changes_Evt := {MT_EVENT}.Mt Event3
Windspeed_Changes_Evt := {MT_EVENT}.Mt_Event4

create db.make (host, dbname)
db.open ()

create notifier.make (db)

event set := Temperature Changes Evt
event set := event set + Windspeed Changes Evt

-- Notify of some events
notifier.notify(event set);

db.close ()

More about MT _EVENT

As illustrated by the previous sections, the MT EVENT class provides all the methods for managing
database events. The reference documentation for the mT_EVENT class is included in the Matisse Eiffel
Binding API documentation located from the Matisse installation root directory in
docs/eiffel/api/index.html.

Working with Database Events 46

10 Object Factories

You can generate your Eiffel class stubs with the mt sd1 utility as follows:
mt sdl stubgen --lang eiffel -f examples.odl

When your persistent classes are defined, you need a factory that is able to create an Eiffel object from a
schema class name defined in the database. The MT_DYNAMIC_OBJECT_FACTORY class does it
for you and this is the default factory.

Connection with a Factory

Using MT_CORE_OBJECT_FACTORY

This factory is the basic MTOBJECT-based object factory. This factory is the most appropriate for
application which does not use generated stubs. This factory is faster than the default Object Factory used
by MT_DATABASE since it doesn't use reflection to build objects.

local

factory: MT_CORE_OBJECT_ FACTORY

db: MT_DATABASE
do

create factory.make

create db.make_factory (host, dbname, factory)
end

Creating your Object Factory

Implementing the MT_OBJECT_FACTORY abstract class

The MT OBJECT FACTORY interface describes the mechanism used by MT DATABASE to create the
appropriate Eiffel object for each Matisse object. Implementing the MT OBJECT FACTORY abstract class
requires to define the get eiffel class () method which return Eiffel class identifier corresponding
to a Matisse Class Name, the get database class () method which return Matisse class name
corresponding to the Eiffel class name and the get object instance () method which return an
Eiffel object based on an oid.

deferred class
MT OBJECT FACTORY

feature -- Abstract Methods

get eiffel class (mtcls name: STRING): INTEGER deferred end

get database class (mtcls name: STRING) : STRING deferred end

get object instance (db: MT DATABASE; mt oid : INTEGER): MTOBJECT deferred end
end

Object Factories 47

Matisse Eiffel Programmer’s Guide

11 Building your Application

This section describes the process for building an application from scratch with the Matisse Eiffel
binding.

Discovering the Matisse Eiffel Classes

The Matisse Eiffel binding is comprised of 2 elements:

1. matisse cluster contains all the core classes. These classes manages the database connection, the
object factories as well as the objects caching mechanisms. It also includes the Matisse meta-
schema classes defined in matisse\reflect as well as all the SQL-related classes defined in the
matisse\sql. These classes manages the execution of al types of SQL statements.

2. matisseEIFFEL library bridges Matisse client library and Eiffel

The Matisse Eiffel API documentation included in the delivery provides a detailed description of all the
classes and methods.

Generating Stub Classes

The Eiffel binding relies on object-to-object mapping to access objects from the database. Matisse
mt_sdl utility allows you to generate the stub classes mapping your database schema classes. Generating
Eiffel stub classes is a 2 steps process:

1. Design a database schema using ODL (Object Definition Language).

2. Generate the Eiffel code from the ODL file:

mt sdl stubgen --lang eiffel -f myschema.odl

A .e file will be created for each class defined in the database. When you update your database
schema later, load the updated schema into the database. Then, execute the mt sd1 utility in the
directory where you first generated the class files, to update the files. Your own program codes
added to these stub class files will be preserved.

Extending the generated Stub Classes

You can add your own source code outside of the BEGIN and £ND markers produced in the generated stub
class.

// BEGIN Matisse SDL Generated Code
// DO NOT MODIFY UNTIL THE 'END of Matisse SDL Generated Code' MARK BELOW

// END of Matisse SDL Generated Code

Building your Application 48

Appendix A: Generated Public Methods

The following methods are generated automatically in the .e class files generated by mt_sd1.

For schema classes

The following methods are created for each schema class. These are class methods (also called static
methods): that is, they apply to the class as a whole, not to individual instances of the class. These
examples are taken from person.

Sample make person (a db: MT DATABASE)
constructor

For all attributes

The following methods are created for each attribute. For example, if the ODL definition for class check
contains the attributes Date and amount, the check.Eiffel file will contain the methods getbate and
getamount. These examples are taken from Person. firstName.

Getvalue firstname, get firstname (): STRING
Set value set firstname (a_val: STRING)

Remove value remove firstname ()

Check Null value is_firstname bull (): BOOLEAN
Check Default is firstname default value (): BOOLEAN
value
Get descriptor get firstname attribute (): MTATTRIBUTE

Returns an MATTRIBUTE object. This method supports advanced Matisse
programming techniques such as dynamically modifying the schema.

For list-type attributes only

The following methods are created for each list-type attribute. These examples are from Person.photo.

Get elements get photo elements (buffer: ARRAY [NATURAL 8]; count, offset:
INTEGER) : INTEGER

Set elements set photo elements (buffer: ARRAY [NATURAL 8]; buffer size, offset:
INTEGER; discard after: BOOLEAN)

Count elements get photo_size()

For all relationships

The following methods are created for each relationship. These examples are from Person. spouse.

Clear successors clear spouse ()

Generated Public Methods 49

Matisse Eiffel Programmer’s Guide

Get descriptor get spouse relationship (): MTRELATIONSHIP

Returns an MTRELATTONSHIP object. This method supports advanced Matisse
programming techniques such as dynamically modifying the schema.

For relationships where the maximum cardinality is 1

The following methods are created for each relationship with a maximum cardinality of 1. These
examples are from Manager.assistant.

Get successor assistant, get assistant (): EMPLOYEE

Set successor set assistant (succ: EMPLOYEE)

For relationships where the maximum cardinality is greater than 1

The following methods are created for each relationship with a maximum cardinality greater than 1.
These examples are from Manager.team.

Get successors team, get team (): ARRAY[EMPLOYEE]
Open an iterator team iterator (): MT OBJECT ITERATOR[EMPLOYEE]
Count successors team size, get team size (): INTEGER

Set successors set team (succs: ARRAY[EMPLOYEE])

Add successors Insert one successor before any existing successors:
prepend team (succ: EMPLOYEE)

Add one successor after any existing successors:
append team (succ: EMPLOYEE)

Add one successor after one specific successor:
append after team (succ, after: EMPLOYEE)

Add multiple successors after any existing successors:
append num team (succs: ARRAY[EMPLOYEE])

Remove remove team (succ: EMPLOYEE)
successors remove num team (succs: ARRAY[EMPLOYEE])

Remove specified successors.

For indexes

The following methods are created for every index defined for a database. These examples are for the
only index defined in the example, Person.personName.

Name personname name: STRING = "personName"

Generated Public Methods 50

For entry-point dictionaries

The following methods are created for every entry-point dictionary defined for a database. These
examples are for the only dictionary defined in the example, Person.commentDict.

Name commentdict name: STRING = "commentDict"

Generated Public Methods 51

	Matisse® Eiffel Programmer’s Guide
	1 Introduction
	Scope of This Document
	Before Reading This Document
	Before Running the Examples

	2 Connection and Transaction
	Building the Examples
	Read Write Transaction
	Read-Only Access
	Version Access
	Specific Options
	More about MT_DATABASE

	3 Working with Objects and Values
	Running the Examples on Objects
	Creating Objects
	Listing Objects
	Deleting Objects
	Comparing Objects
	Running the Examples on Values
	Setting and Getting Values
	Removing Values
	Streaming Values
	Retrieving an Object from its Oid

	4 Working with Relationships
	Running the Examples on Relationships
	Setting and Getting Relationship Elements
	Adding and Removing Relationship Elements
	Listing Relationship Elements
	Counting Relationship Elements

	5 Working with Indexes
	Running the Examples on Indexes
	Index Lookup
	Index Lookup Count
	Index Entries Count

	6 Working with Entry-Point Dictionaries
	Running the Examples on Dictionaries
	Entry-Point Dictionary Lookup
	Entry-Point Dictionary Lookup Count

	7 Working with SQL
	Running the Examples on SQL
	Executing a SQL Statement
	Creating Objects
	Updating Objects
	Retrieving Values
	Retrieving Objects from a SELECT statement
	Retrieving Objects from a Block Statement
	Executing DDL Statements
	Creating a Class
	Creating a SQL Method

	Executing SQL Methods
	Executing a Method returning a Value
	Executing a Method returning an Object
	Catching a Method Execution Error

	Deleting Objects

	8 Working with Class Reflection
	Running the Examples on Reflection
	Creating Objects
	Listing Objects
	Working with Indexes
	Working with Entry Point Dictionaries
	Discovering Object Properties
	Adding Classes
	Deleting Objects
	Removing Classes

	9 Working with Database Events
	Running the Events Example
	Events Subscription
	Events Notification
	More about MT_EVENT

	10 Object Factories
	Connection with a Factory
	Using MT_CORE_OBJECT_FACTORY

	Creating your Object Factory
	Implementing the MT_OBJECT_FACTORY abstract class

	11 Building your Application
	Discovering the Matisse Eiffel Classes
	Generating Stub Classes
	Extending the generated Stub Classes

	Appendix A: Generated Public Methods
	For schema classes
	Sample constructor

	For all attributes
	Get value
	Set value
	Remove value
	Check Null value
	Check Default value
	Get descriptor

	For list-type attributes only
	Get elements
	Set elements
	Count elements

	For all relationships
	Clear successors
	Get descriptor

	For relationships where the maximum cardinality is 1
	Get successor
	Set successor

	For relationships where the maximum cardinality is greater than 1
	Get successors
	Open an iterator
	Count successors
	Set successors
	Add successors
	Remove successors

	For indexes
	Name

	For entry-point dictionaries
	Name

