Matisse® Data
Transformation Services

January 2017

Matisse Data Transformation Services
Copyright © 2017 Matisse Software Inc. All Rights Reserved.

This manual is copyrighted. Under the copyright laws, this manual may not be
copied, in whole or in part, without prior written consent of Matisse Software
Inc. This manual is provided under the terms of a license between Matisse
Software Inc. and the recipient, and its use is subject to the terms of that
license.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-
7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. and
international patents.

TRADEMARKS: Matisse and the Matisse logo are registered trademarks of
Matisse Software Inc. All other trademarks belong to their respective owners.

PDF generated 7 January 2017

Contents

Introduction e 5
1.1 Scopeofthisdocument 5
1.2 Before Readingthisdocument 5
Migrating Relational Data into Matisse 6
2.1 Step 1: Exporting from a Relational Database 6
2.2 Step 2: Importing into Matisse 6
2.3 Step 3: Establishing Links between Entities 6
Consolidating Matisse Data into a Legacy System 9
3.1 Step 1: Exporting Data from Matisse 9
Flattenaclass hierarchy 9

Create Primary Key / ForeignKey. 10

3.2 Step 2: Importing into a Relational Database 10
Using DTS Utilities e e n s 1
41 Themt disUtility 11
Return Status 11

Location. 11

42 Connection Options 12
Tag Definitions 12

XML Format. 12

4.3 Importoplions e 12
Tag Definitions 12

XML Format. 13

XML Formatforlargedata 13

44 EXportoptions 14
Tag Definitions 14

XML Format. 14

XML Formatforlargedata 15

4.5 Linkoplions 16
Tag Definitions 16

XML Format. 16
One-to-Many 16

XML Format. 18

XML Format Preservingthe Order 18
One-To-Many Ordered With Intermediate File 18
Many-to-Many 19

XML Format using an Intermediate Table. 20

XML Formatusinga CSV File. 21

46 DefaultOptionsfile i 21
Contents 3

5 Importing Data froma CSV FileFormat 23

51 FieldValues 23
Integer 23

Real Number 23

Boolean 23

Date. . .. 23

Timestamp. 24

Interval. 24

List. .o 24

5.2 Importing Composed Objects 24

6 Exporting DataintoaCSVFileFormat..................... 26
6.1 ExportUsing SQL 26

6.2 Exporting Composed Objects 26

7 Programming withthe DTSCAPI 28
71 Environment 28

7.2 APIReferences 28
ImportDataFile. .ot e 28
EXportDataFile. . e 29
EstablishRelationshipsFile., 30

8 TableConversionccuiiiiiiiiiierrnnnnnnnnenns 32
8.1 Splitting a Table into a Class Hierarchy 32

9 DataTypesConversioncuiiiiiinnnreennnnnnns 33
9.1 SQLServerintoMatisse i 33

9.2 Matisseinto SQL Server 34

Matisse Data Transformation Services

Matisse Data Transformation Services

1 Introduction

1.1 Scope of this document

This document is intended to help Matisse Database developers and administrators
learn the command lines utilities and programming interfaces that can be used to
extract, transform and load data from a relational source into a Matisse database.

This document also covers the migration process for converting relational data
into a richer Matisse data model. The regeneration of the semantic links between
data elements, that have been lost between the schema Entity-Relationship
diagramming and the relational denormalization process, is also described in great
details.

If there is anything you would like to see added, or if you have any questions
about or corrections to this document, please e-mail us at support@matisse.com.

1.2 Before Reading this document

Throughout this document, we presume that you know the basics of defining a
Matisse schema and that you are familiar with the manipulation of Comma
Separated Values (CSV) files.

Introduction 5

Matisse Data Transformation Services

2 Migrating Relational Data into Matisse

To streamline the transition between a relational database and Matisse, we
describe a simple 3-step data migration process.

2.1 Step 1: Exporting from a Relational Database

This first step consists in exporting the application schema from your relational
database as well as exporting the table contents into CSV format files.

In most cases, exporting your application database schema consists in generating a
SQL DDL script. This script file should include all the database objects (tables,
index, stored procedures, etc.) that you want to migrate into Matisse.

Then, to export all the data, you will in most cases export each table into a single
CSV file. You may also split the table content into multiple CSV files, a typical
example would be if you decide to convert a single table into a class hierarchy.

2.2 Step 2: Importing into Matisse

The second step consists in ‘converting’ the SQL DDL script that you exported
from your relational application, loading it into your Matisse database to create
your schema, and then loading the CSV files into Matisse.

To convert between a relational SQL DDL script and a Matisse SQL DDL script,
you will verify that the datatypes are supported by Matisse, and if not substitute to
the closest match. This task is similar to migrating between different relational
products as all implementations have variations on data types like Timestamp or
Blobs types. The correspondence between data types is described in Chapter 9
Data Types Conversion.

The SQL DDL script can be loaded into Matisse through the Matisse Enterprise
Manager or by running the following command:

> mt sdl -d <db> import --ddl -f <ddl script.sql>

The CSV files can be loaded into Matisse through the Matisse Enterprise Manager
or by running the following command for each file:

> mt dts —-d <db> import -f <file.csv> -c <class_ name>

2.3 Step 3: Establishing Links between Entities

To truly benefit from Matisse modeling capabilities, you need to recreate the
semantic links between entities that existed in your original E-R diagram. All the
relationships between tables, that have been translated into primary-key foreign-
key constraints through the normalization process, need to be recreated.

6 Migrating Relational Data into Matisse

Matisse Data Transformation Services

Consider the case of the associations IsServedBy/IsInChargeOf between the Presidency
and Person classes, which are described in the relational model by the Primary-
key/Foreign-key Pid/Pid.

+spouse | 0.1

Ferson

glastMame : String
Shiddlelnitial © Char
gFirstMame : String

HeServedBy| 1 Fragidency

0.n | ¢Mumber : Integer
gStartingYear : Integer
¢EndingYear : Integer

+sInChargeCf

Figure 2.3.1 Database Schema in Matisse

Presidency
% [Mumber
StartingDate
E:‘;IdlngDate n) Person
| i |Fid
LastMame
MiddleInitial
FirstMame:
I—u 5id

Figure 2.3.2 Original Relational Schema

The links of this one-to-many association can be recreated by going though each
instance of Presidency to associate the appropriate instance of Person.

Matisse DTS services provide a feature to reestablish the links between entities.
The links to be established are described in an XML Relationship Definition
(XRD) file. For example, the relationship to be reestablished between Presidency
and Person is described as follows:

<?xml version="1.0"?2>
<DTSlinks>

Migrating Relational Data into Matisse 7

Matisse Data Transformation Services

<OneToMany>
<PrimaryKey Class="Person"
Relationship="IsInchargeOf"
DeleteAfter="True">Pid</PrimaryKey>
<ForeignKey Class="Presidency"
Relationship="IsServedBy"
DeleteAfter="True">Pid</ForeignKey>
</OneToMany>
<OneToMany>
<PrimaryKey Class="Person"
Relationship="Spouse"
DeleteAfter="True">Pid</PrimaryKey>
<ForeignKey Class="Person"
Relationship="Spouse"
DeleteAfter="True">Sid</ForeignKey>
</OneToMany>
</DTSlinks>

You must first create the missing relationships in your schema. For instance,
executing the following SQL DDL statements will create the relationships that are
described in this XRD example:

ALTER CLASS Person ADD RELATIONSHIP Spouse
REFERENCES (Person)
CARDINALITY (0, 1)
INVERSE Person.Spouse;

ALTER CLASS Person ADD RELATIONSHIP IsInChargeOf
REFERENCES SET (Presidency)
CARDINALITY (0, -1)
INVERSE Presidency.IsServedBy;

ALTER CLASS Presidency ADD RELATIONSHIP IsServedBy
REFERENCES (Person)
CARDINALITY (0, 1)
INVERSE Person.IsInChargeOf;

The XRD file can then be executed from the Matisse Enterprise Manager or by
running the following command:

> mt dts —-d <db> link -f <file.xrd>

You can also reestablish a relationship between entities where the primary key and
foreign key are composed of multiple columns. The primary/foreign keys can hold
up to 4 columns separated by a comma (,). For example, the relationship to be
reestablished between Account and Person is described as follows:

<?xml version="1.0"?>
<DTSlinks>
<OneToMany>
<PrimaryKey Class="Account"
Relationship="Onwer"
DeleteAfter="True">BankId, AccountNumber</PrimaryKey>
<ForeignKey Class="Person"
Relationship="OnwedBy"
DeleteAfter="True">BankId, AccountNumber</ForeignKey>
</OneToMany>
</DTSlinks>

8 Migrating Relational Data into Matisse

Matisse Data Transformation Services

3 Consolidating Matisse Data into a
Legacy System

3.1 Step 1: Exporting Data from Matisse

While Matisse provides you with a richer data model, multi-dimensional data
stored into Matisse can be easily flattened to fit into a table format.

Flatten a class

hierarchy Matisse as follows:

Consider the case of the ProjectMember and ProjectManager hierarchy defined in

CREATE CLASS ProjectMember (

EmpId
FirstName
LastName
Rate

) s

INT,
VARCHAR (32),
VARCHAR (32),
NUMERIC (19, 2)

CREATE CLASS ProjectManager UNDER ProjectMember (

Signaturelevel

INT,

BudgetAuthority INT

) 7

We assume that it is implemented in the relational database as follows:

CREATE TABLE ProjectMembers (

EmpId

EmpType
FirstName
LastName

Rate
SignaturelLevel

INT,
VARCHAR (
VARCHAR (
VARCHAR (
NUMERIC (
INT,

BudgetAuthority INT

)

The following two queries are generating data that matches the relational model:

SELECT EmpId, CLASS NAME AS EmpType , FirstName, LastName, Rate,

Signaturelevel,

BudgetAuthority FROM ProjectManager;

SELECT EmpId, CLASS NAME AS EmpType , FirstName, LastName, Rate, FROM
ONLY ProjectMember;

Alternatively if your model defines EmpType as in INT, you will have to run the

following queries:

SELECT EmpId, 2 AS EmpType ,
Signaturelevel,

FirstName, LastName, Rate,
BudgetAuthority FROM ProjectManager;

Consolidating Matisse Data into a Legacy System

Matisse Data Transformation Services

Create Primary
Key / Foreign
Key

SELECT EmpId, 1 AS EmpType , FirstName, LastName, Rate, FROM ONLY
ProjectMember;

Consider the case of the Person and Presidency classes defined in Figure 2.3.1
where there is no user-defined Primary Key defined on the Person class.

The following queries are generating data that matches the relational model
defined in Figure 2.3.2.

SELECT OID AS Pid, LastName, MiddleInitial, FirstName, Spouse.OID AS
Sid FROM Person;

SELECT Number, StartingYear, EndingYear, IsInChargeOf.OID AS Pid FROM
Presidency;

3.2 Step 2: Importing into a Relational Database

At this stage, you should have created a set of CSV files in a format that matches
your relational database schema.

To import the data into your relational application you will use the import/export
utilities of your target relational product.

10

Consolidating Matisse Data into a Legacy System

Matisse Data Transformation Services

4 Using DTS Utilities

4.1 The mt_dts Ultility

The mt_dts utility can be used to perform import and export of data and to link data

objects.

To import a CSV file input.csv into a database example on host localhost to populate
the class MyClass, use the following command:

> mt_dts -d example@localhost import -f input.csv-c MyClass

and to update the class MyClass, use the following command:

> mt_dts -d example@localhost import -f input.csv-c MyClass -update

To export objects specified by the SQL statement "SELECT ..." from the database
example on host localhost to the file output.csv, use the following command:

> mt_dts -d example@localhost export -f output.csv --sgl "SELECT ..."

To establish links between data objects in the database example on host localhost,
use the following command:

> mt dts -d example@localhost link -f myfile.xrd

You can get a status report of the number of objects imported/exported. The status
report is written to the standard error. The -h option provides a full description of
the command line options.

Return Status The mt_dts utility can return a status value as listed below.

Table 4.1.1 mt_dts status values

Status Code Description

SUCCESS 0 Successful. The whole CSV file has been stored into the database
as new data objects.

PSUCCESS 1 Successful. However, some elements in the CSV file were not
imported in the database, since they already existed in the
database.

MATISSE_ERROR 2 Error regarding Matisse (for example, class not found).

SYNTAX_ERROR Error regarding CSV file format.

NOSUCHFILE 4 The CSV file or option file specified in the command line is not
found.

INVALIDARGS Arguments in the command line are invalid.

INVALIDOPTIONS

Options in the option file are invalid.

FIELDNOTFOUND

A field in the filed does not correspond to any property in the class.

Location mt_dts is located in $MATISSE_HOME/bin.

Using DTS Utilities

11

Matisse Data Transformation Services

4.2 Connection options

Tag Definitions

Table 4.2.1 Connection option tags

Tag Values Default Value Description
memoryTransport YES | NO YES
transportBufferSize 64, 128, 256, 512 128
objectsPerTransaction between 1 and 5120
100,000
discardinvalidRows YES | NO YES
accessForUpdate YES | NO YES
parseOnly YES | NO NO Parse the file then create objects but rollback all
changes.
XML Format Example:
<DTSconnection>

<memoryTransport>YES</memoryTransport>
<transportBufferSize>128</transportBufferSize>
<objectsPerTransaction>1024</objectsPerTransaction>
<discardInvalidRows>YES</discardInvalidRows>
<accessForUpdate>YES</accessForUpdate>
<parseOnly>NO</parseOnly>

</DTSconnection>

4.3 Import options

Tag Definitions

Table 4.3.1 Import option tags

Tag Values Default Value Description

className A class name None The filename is selected for class name if the tag
is not defined in the options.

fieldName YES | NO YES Include field name on the first row.

fieldDelimiter S| {tab} ,

textQualifier “l°

bytesQualifier a character string 0x a prefix to qualify a media type (MT_BYTES,
MT_IMAGE, MT_AUDIO, MT_VIDEO)
represented in hexadecimal coded-ascii
characters

allowUpdates YES | NO NO allow primary key-based updates. The primary

key must be in column 1. For a multi-column key,
the columns (1 through 4) must match the order
defined in the primary key index.

12

Using DTS Utilities

Matisse Data Transformation Services

Table 4.3.1 Import option tags

Tag

Values Default Value Description

columnFromFile

a Column name None Contains the large data filename (image, audio,
video, bytes or text). The ‘Directory’ tag can
define the files location (i.e. Directory="photos").
If the ‘Directory’ tag is omitted, the files must be in
the same directory as the CSV file.

dateOrder MDY | YMD | DMY YMD

yearDigits 214 4

dateDelimiter /- -

timeDelimiter

decimalSymbol -, .

mediaData File | Column File Import/export large binary data (MT_BYTES,
MT IMAGE, MT AUDIO, MT VIDEO) and
large text data (uT_TEXT) embedded as field
values in the CSV file or externalized in
files with a filename referred in the field

XML Format Example:
<DTSimport>

XML Format for
large data

NOTE:

<className>Person</className>
<fieldName>YES</fieldName>
<fieldDelimiter>,</fieldDelimiter>
<textQualifier>”</textQualifier>
<bytesQualifier>0x</bytesQualifier>
<dateOrder>YMD</dateOrder>
<yearDigits>4</yearDigits>
<dateDelimiter>-</dateDelimiter>
<timeDelimiter>:</timeDelimiter>
<decimalSymbol>.</decimalSymbol>
<mediaData>File</mediaData>
</DTSimport>

Example of importing images from the directory photo:

<DTSimport>
<columnFromFile Directory="photos">Photo</columnFromFile>
</DTSimport>

Large binary data (MT_BYTES) and large text data (MT_TEXT) are
imported as field values. But using the ColumnFromFile option tag allow to
import the data from a file.

Using DTS Utilities

13

Matisse Data Transformation Services

4.4 Export options

Tag Definitions

Table 4.4.1 Export option tags

Tag Values Default Value Description

className A class name None

selectStatement A SQL select None

statement

skipOIDColumn YES | NO YES Skip to export the OID column.

fieldName YES | NO YES Include field name on the first row.

fieldDelimiter Y1 {tab} ;

textQualifier “l°

bytesQualifier a character string 0x a prefix to qualify a media type (MT_BYTES,
MT_IMAGE, MT_AUDIO, MT_VIDEO)
represented in hexadecimal coded-ascii
characters

columnToFile a column name None Contains the large data filename (image, audio,
video, bytes or text) exported into a external file.
The ‘Directory’ tag can define the files location
(i.e. Directory="C:\photos"). By default, if the
‘Directory’ tag is omitted, the files are created in
the same directory as the CSV file. The
‘FilenameFormat’ tag defines the file name
format (see below for more details). If the
‘FilenameFormat’ tag is omitted, the filename
format is as follows:
{ClassName}_ {AttributeName}_ {Rowld}.{data
type}

dateOrder MDY | YMD | DMY YMD

yearDigits 2|4 4

dateDelimiter /|- -

timeDelimiter

decimalSymbol .,

booleanSymbol 1/0 | True/False | True

Yes/No

nullSymbol a character string NULL export NULL values with the keyword of your
choice or with an empty field

mediaData File | Column File Import/export large binary data (uT_BYTES,
MT IMAGE, MT AUDIO, MT VIDEO) and
large text data (uT_TEXT) embedded as field
values in the CSV file or externalized in
files with a filename referred in the field

XML Format Example:
<DTSexport>
14 Using DTS Utilities

XML Format for
large data

Matisse Data Transformation Services

<className>Person</className>
<selectStatement>SELECT * FROM Person</selectStatement>
<skipOIDColumn>YES</skipOIDColumn>
<fieldName>YES</fieldName>
<fieldDelimiter>,</fieldDelimiter>
<textQualifier>”</textQualifier>
<bytesQualifier>0x</bytesQualifier>
<dateOrder>YMD</dateOrder>
<yearDigits>4</yearDigits>
<dateDelimiter>-</dateDelimiter>
<timeDelimiter>:</timeDelimiter>
<decimalSymbol>.</decimalSymbol>
<booleanSymbol>True</booleanSymbol>
<nullSymbol>NULL</nullSymbol>
<mediaData>File</mediaData>
</DTSexport>

Using the ColumnToFile tag allows to customize the media filename to be
exported.

<columnToFile Directory="C:\photos"
FilenameFormat="{MediaName}">Photo</columnToFile>

The ‘Directory’ tag can define the files location (i.e. Directory="C:\photos"). By
default, if the ‘Directory’ tag is omitted, the media files are created in the same
directory as the CSV file.

The ‘FilenameFormat’ tag defines the file name format. It can be composed of
text and parameters. A parameter can be an column name, Rowld, or OID. a
Parameter name is defined inside curly braces ({}).

If the ‘FilenameFormat’ tag is omitted, the filename format is as follows:
{ClassName} {ColumnName} {RowId}.{data type}

This default format for attribute Photo of class Employee will generate filenames
such as Employee Photo_ 1.img, Employee Photo 2.img,
Employee Photo 3.img, etc.

For example, exporting images using the OID parameter as defined below will
produce media filename such as image_5334.jpg, image_5338.jpg, image_5359.jpg, etc.:

<DTSexport>
<selectStatement>SELECT c.MediaName,c.Photo FROM PhotoShot
c</selectStatement>
<columnToFile Directory="C:\Export\photos"
FilenameFormat="image {OID}.jpg">Photo</columnToFile>
</DTSexport>

For example, exporting images using a column name as parameter as defined
below will produce media filename equal to the value of MediaName:

<DTSexport>

Using DTS Utilities

15

Matisse Data Transformation Services

NOTE:

<selectStatement>SELECT c.MediaName, c.Photo FROM PhotoShot
c</selectStatement>
<columnToFile Directory="C:\Export\photos"
FilenameFormat="{MediaName}">Photo</columnToFile>
</DTSexport>

Large binary data (MT_BYTES) and large text data (MT_TEXT) are
exported as field values. But using the ColumnToFile option tag allow to
export the data into a file.

4.5 Link options

Tag Definitions

Table 4.5.1 Link option tags

Tag Values Default Value Description
fieldName YES | NO YES Include field name on the first row.
fieldDelimiter S| {tab} ,

textQualifier

dateOrder

MDY | YMD | DMY YMD

yearDigits

214 4

dateDelimiter

I1- -

timeDelimiter

decimalSymbol

XML Format

One-to-Many

Example:

<DTS1link>
<fieldName>YES</fieldName>
<fieldDelimiter>,</fieldDelimiter>
<textQualifier>”</textQualifier>
<dateOrder>YMD</dateOrder>
<yearDigits>4</yearDigits>
<dateDelimiter>-</dateDelimiter>
<timeDelimiter>:</timeDelimiter>
<decimalSymbol>.</decimalSymbol>

</DTSlink>

The associations between classes or tables are divided into 2 broad types: one-to-
many and many-to-many.
The one-to-many type describes associations with cardinality constraint of [0..1]

on one side and [0..n] or [0..1] on the other side.

Typically, you will use one-to-many to describe the relationship Address between a
class Person and a class Location or the relationship Spouse on the class Person.

16

Using DTS Utilities

Table 4.5.2 One-to-Many Relationship Descriptor tags

Matisse Data Transformation Services

Tag Option Values Default Value Description
OneToMany Object describing the elements to rebuild a
one-to-many relationship between 2 classes.

Name A descriptor Defines the relationship descriptor name to

name help identify the descriptor in a file containing
multiple descriptors.

PreserveOrder TRUE|FALSE FALSE To indicate that the order in which the are
defined in the intermediate table must be
preserved

PrimaryKey A column name Column name defining the primary key
element of the association.

Class A class name Defines the class name that supports the
primary key.

Relationship A relationship Defines the relationship name used to

name materialize the one-to-many relationship.

DeleteAfter True | False False To indicate that the column will be deleted after
the links are established.

ForeignKey A column name Column name defining the foreign key element
of the association.

Class A class name Defined the class name that support the
foreign key.

Relationship a Relationship Defined the relationship name used to

name materialize the one-to-many relationship.

DeleteAfter True | False False To indicate that the column will be deleted after
the links are established.

IntermediateTable Object describing the intermediate table.

DeleteAfter True | False False To indicate that the intermediate table will be
deleted after the links are established.

TableName A table name Name of the intermediate table.
IntermediateKey A column name Column name defining the foreign key element
of the association.

AssociatedClass A class name Defined the class name that support the
associate primary key.

AssociatedPrimar An attribute Defined the associated primary key.

yKey name

IntermediateFile Object describing the CSV file containing the
link.
IntermediateTable and IntermediateFile are
exclusive

FileName A file name Name of the CSV file.

IntermediateColu A column name Column name defining the foreign key element

mn of the association.

Using DTS Utilities

17

Matisse Data Transformation Services

Table 4.5.2 One-to-Many Relationship Descriptor tags

Tag Option Values Default Value Description
AssociatedName A Primary Key Defines the associated primary key name
name
AssociatedClass A class name Defines the class name that support the

associate primary key.
Optional when AssociatedName is set.

AssociatedPrimar An attribute Defines the associated primary key value.
yKey name Optional when AssociatedName is set.
XML Format Example:
<OneToMany>

<PrimaryKey Class="ProjectManager”
Relationship="Manages”
DeleteAfter="True”>EmpId</PrimaryKey>
<ForeignKey Class="Project”
Relationship="ManagedBy”
DeleteAfter="True”>ManagerId</ForeignKey>

</OneToMany>
XML Format To establish a one-to-many relationaship which preseves the order of the elements
Preserving the in the association, you need to define an intermediate table that describes the
Order association elements in the order they will be created. Example:

<OneToMany Name="ManagedProjectsRel” PreserveOrder="TRUE”>
<PrimaryKey Class="ProjectManager”
Relationship="Manages”
DeleteAfter="True”>EmpIld</PrimaryKey>
<PrimaryKey Class="Project”
Relationship="ManagedBy”
DeleteAfter="True”>ProjectId</PrimaryKey>
<IntermediateTable DeleteAfter="True”>
<TableName>ManagedProjects</TableName>
<IntermediateKey
AssociatedClass="ProjectManager”
AssociatedPrimaryKey="EmpIld”>EmpIld</IntermediateKey>
<IntermediateKey
AssociatedClass="Project”
AssociatedPrimaryKey="ProjectId”>ProjectId</IntermediateKey>
</IntermediateTable>

</OneToMany>
One-To-Many You can also create an ordered one-to-many relationship from data stored in a
Ordered With CSV file. The use of a CSV file is described in XML with three new tags:
Intermediate IntermediateFile, FileName and IntermediateColumn. An ordered one-to-
File many relationship descriptor with a CSV file is defined as follows:
<DTSlinks>

<OneToMany Name="BookAuthor" PreserveOrder="True">

<PrimaryKey Name="PersonId" Class="Author"
Relationship="RecentPublications">PersonId</PrimaryKey>

<PrimaryKey Name="ISBN" Class="Book">ISBN10</PrimaryKey>

18 Using DTS Utilities

Many-to-Many

Matisse Data Transformation Services

<IntermediateFile>
<FileName>AuthorBooks.csv</FileName>
<IntermediateColumn
AssociatedName="PersonId">PersonId</IntermediateColumn>
<IntermediateColumn
AssociatedName="ISBN">ISBN10</IntermediateColumn>

</IntermediateFile>

</OneToMany>
</DTSlinks>

The many-to-many type describes associations with cardinality constraints of
[0..n] on both sides.

Many-to-many can be used to describe the relationships Parent and Child on a class
Person.

Table 4.5.3 Many-to-Many Relationship Descriptor tags

Tag

Option Values Default Description
Value

ManyToMany

Object describing the elements to
rebuild a Many-to-Many relationship
between 2 classes.

Name A descriptor name Defines the relationship descriptor
name to help identify the descriptor in a
file containing multiple descriptors.

PrimaryKey

A column name Column name defining the primary key
element of the association.

Name A Primary Key Defines the primary key name to help
name identify the primary key with its
matching its associate Primary Key
defined in intermediate table or
intermediate file.

Class A class name Defines the class name that supports
the primary key.

Relationship A relationship Defines the relationship name used to
name materialize one side of the many-to-
many association.

DeleteAfter True | False False To indicate that the column will be
deleted after the links are established.

IntermediateTable

Object describing the intermediate
table.

IntermediateTable and IntermediateFile
are exclusive

DeleteAfter True | False False To indicate that the intermediate table
will be deleted after the links are
established.

TableName

A table name Name of the intermediate table.

Using DTS Utilities

19

Matisse Data Transformation Services

Table 4.5.3 Many-to-Many Relationship Descriptor tags

Tag Option Values Default Description
Value
IntermediateKey A column name Column name defining the foreign key
element of the association.
AssociatedName A Primary Key Defines the associated primary key
name name
AssociatedClass A class name Defines the class name that support the
associate primary key.
Optional when AssociatedName is set.
AssociatedPrimaryKey An attribute name Defines the associated primary key
value.
Optional when AssociatedName is set.
IntermediateFile Object describing the CSV file
containing the link.
IntermediateTable and IntermediateFile
are exclusive
FileName A file name Name of the CSV file.
IntermediateColumn A column name Column name defining the foreign key
element of the association.
AssociatedName A Primary Key Defines the associated primary key
name name
AssociatedClass A class name Defines the class name that support the
associate primary key.
Optional when AssociatedName is set.
AssociatedPrimaryKey An attribute name Defines the associated primary key
value.
Optional when AssociatedName is set.
XML Format Example of a many-to-many relationship:

using an
Intermediate
Table

<DTSlinks>
<ManyToMany Name="ProjectTasks">
<PrimaryKey Class="ProjectMember”
Relationship="AssignedTo”
DeleteAfter="True”>Empld</PrimaryKey>
<PrimaryKey Class="Task”
Relationship="Assignee”
DeleteAfter="True”>TaskId</PrimaryKey>
<IntermediateTable DeleteAfter="True”>
<TableName>AssignedTasks</TableName>
<IntermediateKey
AssociatedClass="ProjectMember”
AssociatedPrimaryKey="EmpId”>EmpIld</IntermediateKey>
<IntermediateKey
AssociatedClass=Task
AssociatedPrimaryKey="TaskId”>TaskId</IntermediateKey>
</IntermediateTable>
</ManyToMany>
</DTSlinks>

20

Using DTS Utilities

XML Format
using a CSV File

Matisse Data Transformation Services

Example of a many-to-many relationship:

<DTSlinks>
<ManyToMany Name="Friends">
<PrimaryKey Name="Member" Class="MemberProfile"
Relationship="Friends">MemberId</PrimaryKey>
<PrimaryKey Name="Friends" Class="MemberProfile"
Relationship="Friends">MemberId</PrimaryKey>
<IntermediateFile>
<FileName>Friends.csv</FileName>
<IntermediateColumn
AssociatedName="Member">MemberId</IntermediateColumn>
<IntermediateColumn
AssociatedName="Friends">FriendId</IntermediateColumn>
</IntermediateFile>
</ManyToMany>
</DTSlinks>

example of content of the associated CSV file Friends.csv:

"MemberId","FriendId"
1,196

1,410

1,350

2,322

2,253

2,90

4.6 Default Options file

The default DTS options are presented below. These are provided in the
DTSdefault.opt options file, which is located in $MATISSE_HOME/options:

<?xml version="1.0"?>
<DTSoptions>

<DTSconnection>
<memoryTransport>YES</memoryTransport>
<transportBufferSize>128</transportBufferSize>
<objectsPerTransaction>1024</objectsPerTransaction>
<accessForUpdate>YES</accessForUpdate>
<discardInvalidRows>YES</discardInvalidRows>
<parseOnly>NO</parseOnly>

</DTSconnection>

<DTSimport>
<className>MtClass</className>
<fieldName>YES</fieldName>
<fieldDelimiter>,</fieldDelimiter>
<textQualifier>"</textQualifier>
<bytesQualifier>0x</bytesQualifier>
<dateOrder>YMD</dateOrder>
<yearDigits>4</yearDigits>
<dateDelimiter>-</dateDelimiter>
<timeDelimiter>:</timeDelimiter>
<decimalSymbol>.</decimalSymbol>
<mediaData>File</mediaData>
<allowUpdates>YES</allowUpdates>

Using DTS Utilities

21

Matisse Data Transformation Services

</DTSimport>

<DTSexport>
<selectStatement>SELECT * FROM MtClass</selectStatement>
<skipOIDColumn>YES</skipOIDColumn>
<fieldName>YES</fieldName>
<fieldDelimiter>,</fieldDelimiter>
<textQualifier>"</textQualifier>
<bytesQualifier>0x</bytesQualifier>
<dateOrder>YMD</dateOrder>
<yearDigits>4</yearDigits>
<dateDelimiter>-</dateDelimiter>
<timeDelimiter>:</timeDelimiter>
<decimalSymbol>.</decimalSymbol>
<booleanSymbol>True</booleanSymbol>
<nullSymbol>NULL</nullSymbol>
<mediaData>File</mediaData>

</DTSexport>

<DTSlink>
<fieldName>YES</fieldName>
<fieldDelimiter>,</fieldDelimiter>
<textQualifier>"</textQualifier>
<bytesQualifier>0x</bytesQualifier>
<dateOrder>YMD</dateOrder>
<yearDigits>4</yearDigits>
<dateDelimiter>-</dateDelimiter>
<timeDelimiter>:</timeDelimiter>
<decimalSymbol>.</decimalSymbol>

</DTSlink>

</DTSoptions>

22 Using DTS Utilities

Matisse Data Transformation Services

5 Importing Data from a CSV File Format

The mt_dts utility adheres to the standard CSV data representation.

5.1 Field Values

This section explains the valid format for the most common data types.

Integer This includes the types SHORT, INTEGER, and LoNG The valid format for integer is
as follows:
[+1-1{0-9}*
Real Number This includes the types rr.oaT and pousLEe. The valid format for real numbers is as
follows:
[(+1=10{0-9}*1[.{0-9}*]1 [{elE}[+|-1{0-9}~*]

The following examples are valid values for real numbers:

123

123.
-.123
+1.23e05
123.E-5

Boolean The valid values for the type BoOLEAN are:

true
false
yes
no

1

0

Date The valid format for the type DATE is:

YYYY-MM-DD

MM-DD-YYYY

DD-MM-YYYY

YY-MM-DD

MM-DD-YY

DD-MM-YY
where YYYY is year number on four digits, MM is month number, and DD is the day
number in the month.

Importing Data from a CSV File Format 23

Matisse Data Transformation Services

For example, the following is a valid date:

2004-02-29

Timestamp The valid format for the type TIMESTAMP is:

YYYY-MM-DD HH:mm:SS[.uuuuuu]

where YYYY is year number, MM is month number, DD is the day number in the month, HH
is hour number (24 hour system), mm is minute number, SS is seconds number and
uuuuuu is the micro-second number. The time is stored as GMT (Greenwich Mean
Time).

For example, the following is a valid timestamp:

2004-01-06 23:24:00

The next one is not valid, since HH must be between 0 and 23:

2004-01-06 24:24:00

Interval The valid format for the type INTERVAL is:

[+|-]DD HH:MM:SS[.uuuuuu]

where DD is number of days, HH is hour number, MM is minute number, SS is seconds
number and uuuuuu is the micro-second number.

For example, the following is a valid interval:

+10 23:00:00.00

List The valid format for the type LIST is:

list elt #1
list elt #2

[...]
list elt #n

where one list element is listed per row.

NOTE: To avoid data duplication in your CSV files, we recommend you use one
CSV file for each column of type list.

5.2 Importing Composed Objects

Composed objects can be imported from a single CSV file. Composed objects are
objects described with “part-of” relationships of type Composition.

24 Importing Data from a CSV File Format

Matisse Data Transformation Services

The first line in the CSV file must list the fields name. Each field of the object
parts is described by its full property path name. For example assuming the order
class described as follows:

interface Order : persistent

{
attribute Integer OrderID;

relationship PostalAddress BillAddress;
relationship PostalAddress ShipAddress;
}i

interface PostalAddress : persistent

{
attribute String<l6> Nullable City;
attribute String<l16> PostalCode;

b

The path to reach the Postal Code in the Billing Address is as follows:
BillAddress.PostalCode

The CSV file may look like the following:

$ more orders.csv

OrderID,BillAddress.City,BillAddress.PostalCode, ShipAddress.City, Sh
ipAddress.PostalCode

10248,Bern, 3012, Geneve, 1204

The following command is importing composed objects in the order class:

$ mt_dts -d example import -f orders.csv -c Order

Importing Data from a CSV File Format 25

Matisse Data Transformation Services

6 Exporting Data into a CSV File Format

You can export data objects into a CSV file format. The objects are selected by
executing a SQL SELECT statement.

6.1 Export Using SQL

You can use an SQL statement to specify objects to be exported. For example, to
export objects of the class ProjectMember, whose last name starts with S, you may

type:

> mt _dts -d mydb@myhost export -f output.csv --sgl "SELECT EmpId,
1 AS EmpType , FirstName, LastName, Rate, FROM ONLY
ProjectMember
WHERE LastName LIKE 'S%'"

The double quotation marks surrounding the SQL statement are for escaping
characters such as * (asterisk) or ' (single quotation). The mt dts utility reads all
strings following -sql until the end of the command line.

For more information about SQL, refer to the Matisse SOL Programmer s Guide.

NOTE: Exporting LIST type values generates one row per element in the list and
repeating other columns value. To avoid data duplication in your CSV
files, we recommend you use one CSV file for each column of type list.

6.2 Exporting Composed Objects

Exporting composed objects from the order class just require to execute a
navigational SQL query such as:

SELECT OrderID,BillAddress.City AS
"BillAddress.City",BillAddress.PostalCode AS
"BillAddress.PostalCode", ShipAddress.City AS
"ShipAddress.City", ShipAddress.PostalCode AS
"ShipAddress.PostalCode" FROM "Order"

The following command is exporting all the composed objects from the order
class:

$ mt_dts -d example export -f orders.csv --sgl "SELECT
OrderID,BillAddress.City AS
\"BillAddress.City\",BillAddress.PostalCode AS
\"BillAddress.PostalCode\", ShipAddress.City AS
\"ShipAddress.City\", ShipAddress.PostalCode AS
\"ShipAddress.PostalCode\" FROM \"Order\""

The CSV file produced is as the following:

$ more orders.csv

26 Exporting Data into a CSV File Format

Matisse Data Transformation Services

"OrderID","BillAddress.City","BillAddress.PostalCode", "ShipAddress.
City","ShipAddress.PostalCode"
10248, "Bern","3012", "Geneve","1204"

Exporting Data into a CSV File Format 27

Matisse Data Transformation Services

/ Programming with the DTS C API

If you need to manage data in CSV format with Matisse from within an
application, you can use the Matisse DTS C Programming API.

7.1 Environment

Your program needs to include the C header file matisseDTS.h which is located in the
directory $SMATISSE_HOME/include. The shared library matisseDTS is located
$MATISSE_HOME/lib.

7.2 API| References

All the C API functions begin with the prefix MDTS.

All of the APIs are listed below:

ImportDataFile

Synopsis #include “matisseDTS.h”

MtString MtDTSImportDataFile
(MtString host,
MtString dbname,
MtString username,
MtString passwd,
MtString csvFile,
MtString optionsFile,
MtString className)

Purpose This function reads a CSV file and store its content in a database.
Arguments host INPUT
The host where the database server is located.
doName INPUT
The database into which the data will be loaded.
username INPUT

The user name of a database account. It can be set to NULL, in which case the
system account is used if the database server enforces access control.

passwrd INTPUT

28 Programming with the DTS C AP/

Result

Description

Matisse Data Transformation Services

The password associated with the user name. It can be set to NULL if the access
control is not enforced.

csvFile INPUT
A file containing the data in a CSV format.
optionsFile INPUT

A file containing the connection and import options. It can be set to NULL in
which case the default options are used.

className INPUT
The class that will receive the data.

A formatted character string containing (1) an error message, (2) statistic
information when the loading is completed successfully or null is the verbose
mode is turned off.

This function reads the option file. It connects to the database to check that the
database schema matches with the class name provided as well as the column
names provided in the CSV file. Then for each valid row that is read in the CSV
file, a new instance is created.

This function manages its own connection to the database.

ExportDataFile

Synopsis

Purpose

Arguments

#include “matisseDTS.h”

MtString MtDTSExportDataFile
(MtString host,
MtString dbname,
MtString username,
MtString passwd,
MtString csvFile,
MtString optionsFile,
MtString sglSelectStmt)

This function executes the select statement and write the result set to a CSV
format file.

host INPUT

The host where the database server is located.
doName INPUT

The database from which the data are exported.

username INPUT

Programming with the DTS C API

29

Matisse Data Transformation Services

The user name of a database account. It can be set to NULL, in which case the
system account is used if the database server enforces access control.

passwrd INTPUT

The password associated with the user name. It can be set to NULL if the access
control is not enforced.

csvFile INPUT
A file receiving the data in a CSV format.
optionsFile INPUT

A file containing the connection and export options. It can be set to NULL in which
case the default options are used.

sglSelectStmt INPUT
The class that will receive the data.

Result A formatted character string containing (1) an error message, (2) statistic
information when the data export is completed successfully or null is the verbose
mode is turned off.

Description This function reads the option file. It connects to the database to execute the SQL
select statement. Then the result set is exported into a file using the CSV options
that are specified.

This function manages its own connection to the database.

EstablishRelationshipsFile

Synopsis #include “matisseDTS.h”
MtString MtDTSEstablishRelationshipsFile
(MtString host,
MtString dbname,
MtString username,
MtString passwd,
MtString xrdFile,
MtString optionsFile)

Purpose This function reads the XRD file and then it establishes the links between the data
objects for each relationship description.

Arguments host INPUT
The host where the database server is located.

dbName INPUT

30 Programming with the DTS C AP/

Matisse Data Transformation Services

The database into which the data will be loaded.

username INPUT

The user name of a database account. It can be set to NULL, in which case the
system account is used if the database server enforces access control.

passwrd INTPUT

The password associated with the user name. It can be set to NULL if the access
control is not enforced.

xrdFile INPUT
An XRD file containing the description of the relationship to be established.
optionsFile INPUT

A file containing the connection and link options. It can be set to NULL in which
case the default options are used.

Result A formatted character string containing (1) an error message, (2) statistic
information when the loading is completed successfully or null is the verbose
mode is turned off

Description This function reads the option file. It connects to the database to check that the
database schema matches with the relationships described in the XRD file. Then it
establishes the links between the data objects for each relationship defined in the
XRD file.

This function manages its own connection to the database.

Programming with the DTS C API 31

Matisse Data Transformation Services

8 Table Conversion

8.1 Splitting a Table into a Class Hierarchy

When converting a relational model into Matisse, you may want to consider
extending your application by splitting a single table into multiple tables which
compose a class hierarchy.

For example splitting the ProjectMembers table into two classes ProjectMember and
ProjectManager.

The following relational table becomes after split a two-class hierarchy in Matisse
as presented below.

Before:

CREATE TABLE ProjectMembers (

Empld INT,

EmpType INT,

FirstName VARCHAR(32),
LastName VARCHAR(32),
Rate NUMERIC(19,2),
SignatureLevel INT,
BudgetAuthority INT

)3

After:

CREATE CLASS ProjectMember (
EmpId INT,
FirstName VARCHAR (32) ,
LastName VARCHAR (32) ,
Rate NUMERIC (19, 2)

) i

CREATE CLASS ProjectManager UNDER ProjectMember (
SignaturelLevel INT,
BudgetAuthority INT

) i

Note that the EmpType field defined in the relational table to represent the type of
employees is not carried over in the class hierarchy.

32 Table Conversion

9 Data Types Conversion

9.1 SQL Server into Matisse

Table 9.1.1 Sql Server into Matisse data type conversion table

Matisse Data Transformation Services

SQL Server Data type Matisse SQL Data type Matisse ODL Data type
bigint LONG Long

binary BYTES | BLOB List<Byte>
bit BOOLEAN Boolean
char STRING | VARCHAR String
datetime TIMESTAMP Timestamp
decimal NUMERIC Numeric
float DOUBLE Double
image IMAGE Image

int INT | INTEGER Integer
money NUMERIC Numeric
nchar NVARCHAR String UTF16
ntext TEXT CHARACTER SET UTF16 Text UTF16
numeric NUMERIC Numeric
nvarchar NVARCHAR String UTF16
real FLOAT Float
small_datetime TIMESTAMP Timestamp
smallint SHORT Short
smallmoney NUMERIC Numeric
sql_variant ANY Any

text TEXT Text
Timestamp | rowversion BYTES(8) List<Byte, 8>
tinyint BYTE Byte
uniqueidentifier VARCHAR(38) String<38>
varbinary BYTES | BLOB List<Byte>
varchar VARCHAR | STRING String

Data Types Conversion

33

Matisse Data Transformation Services

9.2 Matisse into SQL Server

Table 9.2.1 Sql Server into Matisse data type conversion table

Matisse SQL Data type Matisse ODL Data type SQL Server Data type
ANY Any sql_variant
BOOLEAN Boolean bit

BYTE Byte tinyint
CHAR Char char(1)
DOUBLE Double float
FLOAT Float real

INT | INTEGER Integer int
INTERVAL Interval

LONG Long bigint
NUMERIC Numeric numeric
SHORT Short smallint
VARCHAR | STRING String varchar
NVARCHAR | String UTF16 nvarchar
VARCHAR CHARACTER SET

UTF16

DATE Date datetime
TIMESTAMP Timestamp datetime
AUDIO Audio varbinary
BYTES | BLOB List<Byte> varbinary
IMAGE Image image
TEXT | CLOB Text text
VIDEO Video varbinary
NULL NULL

LIST(BOOLEAN) List<Boolean>

LIST(DATE) List<Date>

LIST(DOUBLE) List<Double>

LIST(FLOAT) List<Float>

LIST(INTEGER)

List<Integer>

List<Interval>

LIST(LONG) List<Long>
LIST(NUMERIC) List<Numeric>
LIST(SHORT) List<Short>
LIST(STRING) |LIST(VARCHAR) List<String>

(
(
(
(
(
LIST(INTERVAL)
(
(
(
(
(

LIST(NVARCHAR) |
LIST(VARCHAR CHARACTER
SET UTF16)

List<String UTF16>

LIST(TIMESTAMP)

List<Timestamp>

Data Types Conversion

Matisse Data Transformation Services

Data Types Conversion

35

	Matisse® Data Transformation Services
	Contents
	1 Introduction
	1.1 Scope of this document
	1.2 Before Reading this document

	2 Migrating Relational Data into Matisse
	2.1 Step 1: Exporting from a Relational Database
	2.2 Step 2: Importing into Matisse
	2.3 Step 3: Establishing Links between Entities

	3 Consolidating Matisse Data into a Legacy System
	3.1 Step 1: Exporting Data from Matisse
	Flatten a class hierarchy
	Create Primary Key / Foreign Key

	3.2 Step 2: Importing into a Relational Database

	4 Using DTS Utilities
	4.1 The mt_dts Utility
	Return Status
	Location

	4.2 Connection options
	Tag Definitions
	XML Format

	4.3 Import options
	Tag Definitions
	XML Format
	XML Format for large data

	4.4 Export options
	Tag Definitions
	XML Format
	XML Format for large data

	4.5 Link options
	Tag Definitions
	XML Format
	One-to-Many
	XML Format
	XML Format Preserving the Order
	One-To-Many Ordered With Intermediate File
	Many-to-Many
	XML Format using an Intermediate Table
	XML Format using a CSV File

	4.6 Default Options file

	5 Importing Data from a CSV File Format
	5.1 Field Values
	Integer
	Real Number
	Boolean
	Date
	Timestamp
	Interval
	List

	5.2 Importing Composed Objects

	6 Exporting Data into a CSV File Format
	6.1 Export Using SQL
	6.2 Exporting Composed Objects

	7 Programming with the DTS C API
	7.1 Environment
	7.2 API References
	ImportDataFile
	Synopsis
	Purpose
	Arguments
	Result
	Description

	ExportDataFile
	Synopsis
	Purpose
	Arguments
	Result
	Description

	EstablishRelationshipsFile
	Synopsis
	Purpose
	Arguments
	Result
	Description

	8 Table Conversion
	8.1 Splitting a Table into a Class Hierarchy

	9 Data Types Conversion
	9.1 SQL Server into Matisse
	9.2 Matisse into SQL Server

