Matisse® C++
Programmer’s Guide

January 2017

Matisse C++ Programmer’s Guide
Copyright © 2017 Matisse Software, Inc. All Rights Reserved.

This manual and the software described in it are copyrighted. Under the
copyright laws, this manual or the software may not be copied, in whole or in
part, without prior written consent of Matisse Software, Inc. This manual and
the software described in it are provided under the terms of a license between
Matisse Software, Inc. and the recipient, and their use is subject to the terms of
that license.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-
7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. and
international patents.

TRADEMARKS: MATISSE and the MATISSE logo are registered trademarks
of Matisse Software, Inc. All other trademarks belong to their respective
owners.

PDF generated 7 January 2017

Matisse C++ Programmer’s Guide

Contents

1 Introduction e 5
Scope of This DOCUMENt 5
Before Reading This DocumeNt 5
Additional Documentation for the C++ Binding. 5

2 Instructions for CH+ Examples ittt ittt ittannnnnnnnnnnnns 6
Before Running the Examples e 6
Compiling the EXamples.o 6
Generating Class Documentation. 7

3 Connectionand Transactionttt i aaa et e e aaaanann 8
Building the Examples 8
Read Write Transaction 8
REad-ONlYy ACCESS ottt e e e e 9
VISION ACCESS . . . o o ittt et e e e e e 9
Other OptioNSo 10

4 Working with ObjJects it it it et e et 13
Running ObjectsExample 13
Creating ObjecCtS. 13
LisSting ObJECtS ot 14
Deleting ObJeCtS o 14

5 WorkingwithValues i i et e st e s 15
Running ValuesExample 15
Setting and Getting Values. 15
RemoviNg ValUeso e 16
Streaming ValUueso 16

6 Working with Relationships i i i it et e e e eennnnnns 18
Running RelationshipsExample 18
Setting and Getting Relationship Elements 18
Adding and Removing Relationship Elements 19
Listing Relationship Elements e 19
Counting Relationship Elements 20

7 WorkingwithIndexes i i i et e et e s 21
Running IndexExample e 21
INAEX LOOKUD . . o . ottt e e e 21
Index LooKUP CoUNt e 21
Index Entries CoUNt e 22

8 Working with Entry-Point Dictionaries ittt inneees 23
Running EPDICIEXamMPpIeo e 23
Entry-Point Dictionary LOOKUPDot e 23

3 Table of Contents

Matisse C++ Programmer’s Guide

Entry-Point Dictionary Lookup Count e 23
9 Working With SQL i i i i et et et e e 24
RuNnning SQLEXamMpIeo e 24
Retrieving Values e 24
Retrieving Objects from a SELECT statement. e 25
10 Optimization i i i et e 27
Installing Sample AppliCations e 27
Creating Multiple Objects 27
Other Operations on Multiple Objects. e e 28
Eliminating Instances from the Client Cache 28
Clearing the C++ Instance Cache e e 29
Using PoINters e 29
11 Additional TOPICSttt i i st s s et eeaaanaaaaanaaaaaaeanans 30
Y =) 30
NaAMESPACES. . .« ottt e 30
Error Handlingo e 31
12 Working with Database Events i e 34
Running EventsEXample e 34
Events SUDSCIiptiON e 34
Events Notification 35
More about MEEVENt e 35
Appendix A: Example Schema i i i i ittt ettt 36
Appendix B: Generated Methods ittt iieanaaaaannnnns 38

Table of Contents 4

Matisse C++ Programmer’s Guide

1 Introduction

Scope of This Document

This document is intended to help C++ programmers learn the aspects of Matisse design and
programming that are unique to the Matisse C++ binding.

Aspects of Matisse programming that the C++ binding shares with other interfaces, such as basic
concepts and schema design, are covered in Getting Started with Matisse.

Future releases of this document will add more advanced topics. If there is anything you would like to see
added, or if you have any questions about or corrections to this document, please send e-mail to
support@matisse.com.

Before Reading This Document

Throughout this document, we presume that you already know the basics of C++ programming and either
relational or object-oriented database design, and that you have read the relevant sections of Getting
Started with Matisse.

Additional Documentation for the C++ Binding

Getting Started with Matisse and the sample code and example applications discussed in this document
are available for download at:

http://www.matisse.com/developers/documentation/
The HTML-format Matisse C++ Binding API Reference is installed with Matisse at:

$MATISSE HOMES$/docs/cxx/api/index.html

5 Introduction

Matisse C++ Programmer’s Guide

2 Instructions for C++ Examples

Before Running the Examples

Before running this and the following examples, you must do the following:
* Install Matisse.

* Install a C++ compiler. Makefiles are provided for use with GNU GCC, Microsoft Visual C++ and
Solaris C++. With other compilers, you will need to create your own makefiles.

* Set the MaATISSE HOME environment variable to the top-level directory of the Matisse installation.
¢ Download and extract the C++ sample code from the Matisse Web site:
http://www.matisse.com/developers/documentation/

The sample code files are grouped in subdirectories by chapter number. For example, the code
snippets from the following chapter are in the chap_3 directory.

* Create and initialize a database. You can simply start the Matisse Enterprise Manager, select the
database ‘example’ and right click on ‘Re-Initialize’.

* From a Unix shell prompt or on MS Windows from a ‘Command Prompt” window, change to the
chap_x subdirectory in the directory where you installed the examples.

« If applicable, load the ODL file into the database. From the Enterprise Manager, select the database
‘example’ and right click on ‘Schema->Import ODL Schema’. For example you may import
chaps 4 5/objects.odl for the Chapter 4 demo.

¢ QGenerate C++ class files.

mt sdl stubgen --lang cxx -f objects.odl

Compiling the Examples

Three sets of makefiles are supplied for several platforms which can build the supplied applications from
a command line tool. Each makefile will compile all sources and link all applications in the directory.

¢ With GNU GCC, run:
gmake -f Makefile.gcc

e With Microsoft Visual C++, run:
nmake /f Makefile.win32

If this fails with the error message, 'cl' is not recognized as an internal or external
command, enable the compiler’s command-line option by running the batch file vCVARSALL.BAT,
which you should find in a Visual C++ directory.

Instructions for C++ Examples

Matisse C++ Programmer’s Guide

¢ With Solaris C++, run:

make -f Makefile.sun

These makefiles will not set up any databases needed by the applications, but will generate any source
required from the ODL file.

Generating Class Documentation

You can generate an API reference for a set of generated C++ classes with doxygen, the open-source tool
used to generate the Matisse C++ binding API documentation.

7 Instructions for C++ Examples

Matisse C++ Programmer’s Guide

3 Connection and Transaction

All interaction between client C++ applications and Matisse databases takes place within the context of
transactions (either explicit or implicit) established by database connections, which are transient instances
of the Mt Database class. Once the connection is established, your C++ application may interact with the
database using the schema-specific methods generated by mt_sd1 (see Generated Methods on page 38).
The following sample applications show a variety of ways of connecting with a Matisse database.

Note that in this chapter there is no ODL file as you do not need to create an application schema.

Building the Examples

1. Follow the instructions in Before Running the Examples on page 6.
2. Change to the chap 3 directory in your installation (under cxx examples).

3. Build the application.

Read Write Transaction

The following code extracted from chap 3/Connect.cpp connects to a database, starts and commits a
transaction, and closes the connection:

try
{
MtDatabase db(av([1l], av([2]);

// open, select and start access to the database
db.open () ;
db.startTransaction () ;

// read/write access
std::cout << "Successful connection and open transaction to "
<< db << std::endl;

db.commit () ;
db.close();
}
catch (MtException é&e)
{
std::cerr << e << std::endl;
}
catch (...)
{
std::cerr << "Unknown exception" << std::endl;

}

Connection and Transaction 8

Matisse C++ Programmer’s Guide

Read-Only Access

The following code extracted from chap 3/VersionConnect.cpp connects to a database in read-only
mode, suitable for reports:

try
{
MtDatabase db(av[1l], av[2]);

// open, select and start access to the database
db.open () ;
db.startVersionAccess () ;

// version connect implies read-only access
std::cout << "Successful connection and version access to "
<< db << std::endl;

db.endVersionAccess () ;
db.close();

}
catch (MtException é&e)

{
std::cerr << e << std::endl;
}
catch (...)

{

std::cerr << "Unknown exception" << std::endl;

Version Access

The following code extracted from chap 3/VersionNavigation.cpp illustrates methods of accessing
various versions of a database.

// simple function which opens an iterator on the list of version names
void listVersions (MtDatabase& db)
{

MtStringIlterator viter = db.versionIterator();

std::cout << db << " has these versions:" << std::endl;
while (viter.hasNext())
{

std::string vname = viter.next();

std::cout << "\t" << vname << std::endl;

// close when finished.
viter.close();
} // end anon namespace

try
{

9 Connection and Transaction

Matisse C++ Programmer’s Guide

MtDatabase db(av[1l], av[2]);

// open, select and start access to the database
db.open () ;

db.startTransaction () ;

std::cout << "\nVersions before regular commit:" << std::endl;
listVersions (db) ;

db.commit () ;

db.startTransaction();
std::cout << "\nVersions after regular commit:" << std::endl;
listVersions (db) ;

// Providing a version name when committing a transaction

// creates a named version of the database that must be

// explicitly destroyed. The version name is the string

// passed in argument (which disginguishes versions created

// by this client) plus a unique ID number appended by the

// server (which distinguishes this version from others

// created by this client).

std::string vername = db.commit ("test");

std::cout << "\nCommit to version named: " << vername << std::endl;

db.startVersionAccess () ;

std::cout << "\nVersions after named commit:" << std::endl;
listVersions (db) ;

db.endVersionAccess () ;

// A saved version can be accessed read-only

db.startVersionAccess (vername) ;

std::cout << "\nSuccessful access within version: " << vername
<< std::endl;

db.endVersionAccess () ;

db.close () ;

}
catch (MtException é&e)

{

std::cerr << e << std::endl;

}
catch (...)

{

std::cerr << "Unknown exception" << std::endl;

Other Options

This source code extracted from chap 3/VersionNavigation.cpp shows how to enable the local client-
server memory transport and to set or read various connection options and states.

class AdvancedConnect
{
private:

MtDatabase db;

Connection and Transaction 10

public:
// constructor creates the MtDatabase

AdvancedConnect (const std::stringé& host,

db (host, dbname)

void run ()

if (getenv ("MT MEM TRANS") != NULL)
db.setOption (::MT MEMORY TRANSPORT, 1);

Matisse C++ Programmer’s Guide

const std::stringé& dbname)

// possible values are 0=RW, 1=RO, 2=DD (RW + Schema Modification)

if (getenv ("MT DATA ACCESS") = NULL)
{
int da opt = atoi(getenv ("MT DATA ACCESS"));
db.setOption(::MT DATA ACCESS MODE, da opt);
}

if (getenv ("dbuser") != NULL)

{
std::string user = getenv ("dbuser") ? getenv ("dbuser") : "";
std::string passwd = getenv ("dbpasswd") ? getenv ("dbpasswd")
db.open (user, passwd);

}
else

{
db.open () ;

}

start (isReadOnly ()) ;
printState();

// do other work here

end () ;
db.close () ;

void start (bool readonly)

{

if (readonly)
db.startVersionAccess () ;

else
db.startTransaction () ;

void end(void)

{

if (db.isVersionAccessInProgress())
db.endVersionAccess () ;
else if (db.isTransactionInProgress())
db.commit () ;
else
std::cerr << "No transaction/version access in progress"
<< std::endl;

wn .,
’

11

Connection and Transaction

Matisse C++ Programmer’s Guide

bool isMemoryTransportOn ()
{

return (db.getOption(::MT_TRANSPORT_TYPE) == ::MT MEM TRANSPORT) ;
}

bool isReadOnly ()
{

return (db.getOption(::MT DATA ACCESS MODE) == 1);
}

void printState()
{
if (!db.isConnectionOpen{())
{
dbmsg ("not connected");
}
else
{
if (db.isTransactionInProgress())
dbmsg ("read-write transaction underway");
else if (db.isVersionAccessInProgress())
dbmsg ("read-only version access underway");
else
dbmsg ("no transaction underway") ;
}
std::string msg = "MEMORY TRANSPORT is ";
msg += (isMemoryTransportOn() ? "on" : "off");
dbmsg (msqg) ;
msg = "Access is ";
msg += (isReadOnly () ? "readonly" : "readwrite");
dbmsg (msg) ;

void dbmsg(const std::string& msqg)
{
std::cout << db << ": " << msg << std::endl;

b

Connection and Transaction

Matisse C++ Programmer’s Guide

4 Working with Objects

Running ObjectsExample

This sample program creates two objects (one person and one Employee), lists all Person objects (which
includes both objects, since Employee is a subclass of Person), deletes both objects, then lists all Person
objects again to show the deletion. Note that because FirstName and LastName are not nullable, they
must be set when creating an object.

1. Follow the instructions in Before Running the Examples on page 6.
2. Change to the chaps 4 5 directory in your installation (under cxx_examples).

3. Load objects.odl into the database. From the Enterprise Manager, select your database and right
click on ‘Schema->Import ODL Schema’, then select objects.odl.

4. Generate C++ class files.
mt sdl stubgen --lang cxx -f objects.odl

5. Compile and link the application with the appropriate makefile (see Compiling the Examples on
page 6).

6. Run the application:

ObjectsExample host database

Creating Objects

This section illustrates the creation of objects. The stubclass provides a default constructor which is the
base constructor for creating persistent objects.

// open, select and start access to the database
db.open () ;
db.startTransaction () ;

// create a new Person

Person& p = Person::create (db) ;
// modify attributes
p.setFirstName ("John") ;
p.setLastName ("Smith") ;

// create a new Employee

Employee& e = Employee: :create (db) ;
// set attributes

e.setFirstName ("Jane") ;
e.setLastName ("Jones") ;

db.commit () ;

13 Working with Objects

Matisse C++ Programmer’s Guide
Listing Objects

This section illustrates the enumeration of objects from a class. The instanceIterator () static method
defined on a generated stubclass allows you to enumerate the instances of this class and its subclasses.
The getInstanceNumber () method returns the number of instances of this class.

// list all Persons
std::cout << std::endl << Person::getInstanceNumber (db)
<< " Persons in the database" << std::endl;

// open an iterator on all the instances of Person and all
// subclasses; if you wish to exclude subclasses, use
// Person::ownInstancelterator () instead
MtObjectIterator<Person> piter = Person::instancelterator (db) ;
while (piter.hasNext())
{

// use object reference

Person &x = piter.next();

// show attributes and name of class

std::cout << "\t" << x.getFirstName () << " " << x.getLastName ()

<< " is a " << x.getMtClass () .getMtName () << std::endl;

Deleting Objects

This section illustrates the removal of objects. The remove() method delete an object.
db.startTransaction () ;

// remove created objects

std::cout << "\nRemoving created objects" << std::endl;
p.remove () ;

e.remove () ;

// list again to show deletion, similar to above
std::cout << "\nAfter deletion:" << std::endl;
std::cout << Person::getInstanceNumber (db)
<< " Persons in the database" << std::endl;

MtObjectIterator<Person> piter2 = Person::instancelterator (db);
while (piter2.hasNext())
{

Person &x = piter2.next();

std::cout << "\t" << x.getFirstName () << " " << x.getLastName ()

<< " is a " << x.getMtClass () .getMtName () << std::endl;

db.commit () ;

Working with Objects

14

Matisse C++ Programmer’s Guide

5 Working with Values

Running ValuesExample

This example is generated by the makefile used in objectsExample, and it uses the same database. It
creates an object, manipulates its values in various ways as described in the source-code comments,

imports the data in the file matisse.qgif to an attribute value, creates a new file from the stored data,
then removes the object.

To launch the application:

ValuesExample host database

Setting and Getting Values

This section illustrates the set, update and read object property values. The stubclass provides a set and a
get method for each property defined in the class.

// create a new Employee

Employee& e = Employee::create(db);

// setting string attributes
e.setComment ("setting values");
e.setFirstName ("John") ;
e.setLastName ("Jones") ;

// setting numbers
e.setAge (42) ;

// setting Date
matisse::MtTimestamp ts ("2002-02-02");
e.setHireDate (ts) ;

// setting Numeric
matisse: :MtNumeric num(2958.33);
e.setSalary (num) ;

// getting
std::cout << std::endl << e.getComment () << std::endl;
std::cout << "\tEmployee: " << e.getFirstName() << " "

<< e.getLastName () << std::endl;

// suppress output if no value set
// use generated isAgeNull () method to check if value is null
if (! (e.isAgeNull()))

std::cout << "\t" << e.getAge() << " years old" << std::endl;

std::cout << "\tNumber of Dependents: " << e.getDependents ()
<< std::endl;

std::cout << "\tSalary: $" << e.getSalary() << std::endl;

std::cout << "\tHired on: " << e.getHireDate () << std::endl;

// changing values (getting and setting)

15

Working with Values

Matisse C++ Programmer’s Guide

e.setDependents (e.getDependents () + 2);

Removing Values

This section illustrates the removal of object property values. Removing the value of an attribute will
return the attribute to its default value.

Employee e;

// Removing value returns attribute to default
e.removeAge () ;

Streaming Values

This section illustrates the streaming of blob-type values (MT BYTES, MT AUDIO, MT IMAGE,

MT viIDEO). The stubclass provides streaming methods (setPhotoElements(), getPhotoElements ()) for
each blob-type property defined in the class. It also provides a method (getPhotosize ()) to retrieve the
blob size without reading it.

// setting blob

int bufSize = 15; // small buff size for demo purposes
int actualBytes;

int totalBytes = 0;

// use auto_ptr to clean up when done

std::auto ptr<char> tmpBytes (new char[bufSize]);

// binary file on disk
std::ifstream is("matisse.gif", std::ios::in | std::ios::binary);
if (!is)
{
std::cerr << "matisse.gif does not exists" << std::endl;
}
else
{
// initial call to truncate data
e.setPhotoElements ((: :MtByte*) tmpBytes.get (), O,
MT BEGIN_OFFSET, true);
while (!is.eof())
{
actualBytes = (is.read(tmpBytes.get (), bufSize)) .gcount();
e.setPhotoElements ((: :MtByte*) tmpBytes.get (), actualBytes,
MT CURRENT OFFSET, true);
totalBytes += actualBytes;
}
is.close () ;
}
std::cout << "transferred " << totalBytes
<< " bytes from matisse.gif to object"
<< std::endl;

// read blob and store to file, just reverse the process from above
std::ofstream os("new.gif", std::ios::binary);

Working with Values 16

Matisse C++ Programmer’s Guide
totalBytes = 0;
if (los)
{
std::cerr << "Failure opening new.gif" << std::endl;
}

else

{

// reset the steam

e.getPhotoElements ((: :MtByte*) tmpBytes.get (), 0, MT_BEGIN_OFFSET) ;
do {
actualBytes = e.getPhotoElements ((::MtByte*) tmpBytes.get (),
bufSize, MT_CURRENT OFFSET);
os.write (tmpBytes.get (), actualBytes);
totalBytes += actualBytes;
} while (actualBytes == bufSize);
os.close () ;

}

std::cout << "transferred " << totalBytes
<< " bytes from object to new.gif"
<< std::endl;

17

Working with Values

Matisse C++ Programmer’s Guide

6 Working with Relationships

Running RelationshipsExample

This example creates several objects, manipulates the relationships among them in various ways as
described in the source-code comments, then removes the objects.

1. Follow the instructions in Before Running the Examples on page 6.
2. Change to the chaps 6 7 8 directory in your installation (under cxx_examples).

3. Load examples.odl into the database. From the Enterprise Manager, select your database and right
click on ‘Schema->Import ODL Schema’, then select examples.odl.

4. Generate C++ class files.
mt sdl stubgen --lang cxx -f examples.odl

5. Compile and link the application with the appropriate makefile (see Compiling the Examples on
page 6).

6. Launch the application:

RelationshipsExample host database

Setting and Getting Relationship Elements

This section illustrates the set, update and get object relationship values. The stubclass provides a set and
a get method for each relationship defined in the class.

// create a manager
Manager& ml = Manager::create (db);

// set the successor object for reportsTo (in this case it
// refers to itself, i.e., this manager is the big boss at
// the top of the reporting hierarchy)
ml.setReportsTo (ml) ;

// create another manager
Manager& m2 = Manager::create (db) ;

m2.setReportsTo (ml) ; // the manager

// create an employee
Employee& e = Employee::create (db);

e.setReportsTo (m2) ;
// specify an assistant for each of the two managers

ml.setAssistant (e);
m2 .setAssistant (e) ;

Working with Relationships 18

Matisse C++ Programmer’s Guide

// get the entire list of sucessors (class Manager)
MtObjectArray<Manager> list = e.getAssistantOf();
// access list as an array using operator|[]
for (int i=0; 1 < (int)list.size(); 1i++)

std::cout << "\t" << e.getFirstName() << " is "

<< list[i].getFirstName () << "'s assistant" << std::endl;

// create a few extra persons
Person& cl = Person::create(db);

Person& c2 = Person::create (db);

// a std::vector of Type* can be converted to from

// MtObjectArray<T> which can be used as argument to set a list
// of successors

std: :vector<Person*> cVec (2);

cVec[0] = &cl;

cVec[l] = &c2;

MtObjectArray<Person> children (db, cVec) ;

m2 .setChildren (children);

Adding and Removing Relationship Elements

This section illustrates the adding and removing of relationship elements. The stubclass provides a

append, a remove and a clear method for each relationship defined in the class.

Person& c3 = Person::create (db);

// append to existing list
m2 .appendChildren (c3) ;

// use of MtObjectArray<> for specifying a list to remove
std: :vector<Person*> rVec (2);

rVec[0] = &c2;

rVec[l] = &c3;

MtObjectArray<Person> children2 (db, rVec);

// remove

m2 .removeChildren (children2) ;

// another signature supports a single removal
// m2.removeChildren (c2) ;

// m2.removeChildren (c3);

// clear all the successors
m2.clearChildren () ;

Listing Relationship Elements

This section illustrates the listing of relationship elements for one-to-many relationships. The stubclass

provides an iterator method for each one-to-many relationship defined in the class.

19

Working with Relationships

Matisse C++ Programmer’s Guide

std::cout << "\nAdd successors and iterate through children.."
<< std::endl;

MtObjectIterator<Person> piter = m2.childrenIterator () ;
while (piter.hasNext())
{

Person &p = piter.next();

std::cout << "\t\t" << p.getFirstName () << std::endl;

Counting Relationship Elements

This section illustrates the counting of relationship elements for one-to-many relationships. The stubclass
provides an get size method for each one-to-many relationship defined in the class.

int cnt = m2.getChildrenSize () ;
std::cout << "\tNow " << m2.getFirstName() << " has "
<< cnt << " children" << std::endl;
// an alternative to get the relationship size
// but the c++ objects are loaded before you can get the count
cnt = m2.getChildren() .size();

Working with Relationships 20

Matisse C++ Programmer’s Guide

7 Working with Indexes

Running IndexExample

This example is generated by the makefile used in RelationshipsExample, and it uses the same
database. It first creates some pPerson objects in the database and lists their names; then, using the
personName index, checks whether the database contains an entry for a person matching the specified
name; then deletes the objects.

To run the application:

IndexExample host database firstName lastName

Index Lookup

This section illustrates retrieving objects from an index. The stubclass provides a lookup and a iterator
method for each index defined on the class.

// The lookup function must return a Person* to allow for NULL
// to represent no match
Person *found = Person::lookupPersonName (db, lastName, firstName);

// instead of searching, open an iterator within the specified
// criteria; an Index can specify upto 4 criteria and this API
// would change accordingly (see examples.odl for specification)

std::string fromFirstName = "Fred";
std::string toFirstName = "John";

std::string fromLastName = "Jones";
std::string tolastName = "Murray";

MtObjectIterator<Person> pplter = Person::personNamelterator (db,
fromLastName, fromFirstName, toLastName, toFirstName) ;
while (ppIlter.hasNext())
{
Person &p = pplter.next();
std::cout << "\t" << p.getFirstName () << " " << p.getLastName ()
<< std::endl;

Index Lookup Count

This section illustrates retrieving the object count for a matching index key. The getobjectNumber()
method is defined on the Mt Index class.

MtValue vals [MT MAX CRITERIA] = {newString(fromLastName), newString(fromFirstName) };
MtSize num = Person::getPersonNameIndex (db) .getObjectNumber (vals) ;
std::cout << "\n" << num << " object(s) retrieved" << std::endl;

21 Working with Indexes

Matisse C++ Programmer’s Guide

Index Entries Count

This section illustrates retrieving the number of entries in an index. The get IndexEntriesNumber()
method is defined on the Mt Index class.

MtSize count = Person::getPersonNameIndex (db) .getIndexEntriesNumber () ;
std::cout << "\n" << count << " entries in the index " << std::endl;

Working with Indexes

22

Matisse C++ Programmer’s Guide

8 Working with Entry-Point Dictionaries

Running EPDictExample

This example is generated by the makefile used in RelationshipsExample, and it uses the same
database. It first creates some person objects in the database and lists them; then, using the
commentDict entry-point dictionary, counts the number of objects with comments fields containing the
search string passed at the command line; then deletes the objects.

To run the application:

EPDictExample host database search string

Entry-Point Dictionary Lookup

This section illustrates retrieving objects from an entry-point dictionary. The stubclass provides access to
lookup methods and iterator methods for each entry-point dictionary defined on the class.

// set the search string from command line
std::string searchString = av[3];

// open an iterator on the number of Persons that match

MtObjectIterator<Person> plter = Person::commentDictIterator (db,
searchString) ;

while (pIter.hasNext())

{

Person &p = plter.next();
std::cout << "\t" << p.getFirstName() << " " << p.getLastName ()
<< std::endl;

Entry-Point Dictionary Lookup Count

This section illustrates retrieving the object count for a matching entry-point key. The
getObjectNumber() method is defined on the MtEntryPointDictionary class.

MtSize num = Person::getCommentDictDictionary (db) .getObjectNumber (searchString);
std::cout << "\n" << num << " object(s) retrieved" << std::endl;

23 Working with Entry-Point Dictionaries

Matisse C++ Programmer’s Guide

9 Working with SQL

Running SQLExample

This example executes two SQL queries and displays their results.

The first query (select name, id, boss.name from Employee where id > 2)uses standard SQL
syntax and returns “column” (attribute/relationship) and “row” (object) names and attribute values in the
familiar table format.

The second query (select Ref (Employee), Ref (boss) from Employee where id > 2)uUses
Matisse’s object extensions and returns object IDs (OIDs), which in turn are used to get the names and
values.

1. Follow the instructions in Before Running the Examples on page 6.
2. Change to the chap 9 directory in your installation (under cxx_examples).

3. Load sql_eg.odl into the database. From the Enterprise Manager, select your database and right click
on ‘Schema->Import ODL Schema’, then select sql_eg. od1.

4. Generate C++ class files.
mt sdl stubgen --lang cxx -f sgl eg.odl

5. Load the sample data into the database. From the Enterprise Manager, select your database and right
click on ‘Schema->Import ODL Schema’, then select sql_eg. sq1. This will make the SQL statement
appear in the Query Editor window. Then click ‘Execute Query’.

6. Compile and link the application with the appropriate makefile (see Compiling the Examples on
page 6).

7. Launch the application:

SQLExample host database

Retrieving Values

You use the ResultSet object, which is returned by the executeQuery method, to retrieve values or
objects from the database. Use the next method combined with the appropriate getstring, getInt, etc.
methods to access each row in the result.

The following code demonstrates how to retrieve string and integer values from a Resultset object after
executing a SELECT statement.

db.open () ;

db.startVersionAccess () ;

// Set the SQL CURRENT NAMESPACE to 'examples.cxx examples.chap 9' so there is
// no need to use the full qualified names to acces the schema objects
db.setSglCurrentNamespace ("examples.cxx examples.chap 9");

Working with SQL 24

Matisse C++ Programmer’s Guide

// create a statement, execute some sgl and iterate through row/cols
MtStatement stmt (db) ;
std::string sglStr =
"SELECT e.name, e.id, e.boss.name FROM Employee e WHERE e.id > 2";
std::cout << "Sgl Default Namespace: " << db.getSglCurrentNamespace () << std::endl;
std::cout << "Query: " << sglStr << std::endl;

MtResultSet res = stmt.executeQuery(sglStr);

// list names and types
// column index is l-based

for (unsigned int i = 1; i <= res.getColumnCount (); i++)
{
std::cout << "column " << i << " '"" << res.getColumnName (1)
<< "' type is: "

<< res.getColumnTypeName (1) << std::endl;

}

// since we know that we asked for string and integer, we can dump

// all the results

// use the next method to move through rows

while (res.next())

{

std::cout << "Employee name: " << res.getString(l) << ", id: "

<< res.getInteger(2) << ", boss : " << res.getString(3)
<< std::endl;

// always remember to close the statement when done
stmt.close();

db.endVersionAccess () ;

db.close () ;

Retrieving Objects from a SELECT statement

You can retrieve C++ objects directly from the database without using the Object-Relational mapping
technique. This method eliminates the unnecessary complexity in your application, i.e., O/R mapping
layer, and improves your application performance and maintenance.

To retrieve objects, use REF in the select-list of the query statement and the getobject method returns
an object. The following code example shows how to retrieve Person objects from a ResultSet object.

db.open () ;

db.startVersionAccess () ;

// Set the SQL CURRENT NAMESPACE to 'examples.cxx examples.chap 9' so there is
// no need to use the full qualified names to acces the schema objects
db.setSglCurrentNamespace ("examples.cxx examples.chap 9");

// to get a list of objects, use the Ref operator
MtStatement stmt (db) ;

std::string sqlStr = "SELECT Ref (Employee), Ref (boss) FROM Employee WHERE id > 2;";
std::cout << "Sgl Default Namespace: " << db.getSglCurrentNamespace () << std::endl;
std::cout << "Query: " << sglStr << std::endl;

MtResultSet res = stmt.executeQuery(sglStr);

25

Working with SQL

Matisse C++ Programmer’s Guide

// list names and types
// column index is l-based
for (unsigned int i = 1; i <= res.getColumnCount(); i++)
{
std::cout << "column " << i << " '"" << res.getColumnName (1)
<< "' type is: "
<< res.getColumnTypeName (i) << std::endl;
}
// still use the ResultSet, but get the object and coerce to the
// class we expect (note: wusing dynamic cast<> will throw
// std::bad cast if the result type is not acceptable)
while (res.next())
{
// show the class name of the reference
std::cout << "[class ="
<< res.getMtObject (1) ->getMtClass () .getMtName ()
<"1,
// Note: wusing dynamic cast with pointer conversion returns
// NULL on failure. If you would prefer an exception
// (std::bad cast), use object reference to make it an
// assertion, e.g.:
// Employee* e = &dynamic cast<Employee&>(* (res.getMtObject (1)));
Employee *e = dynamic cast<Employee *>(res.getMtObject(1l));
Manager *m = dynamic cast<Manager *>(res.getMtObject(2));
if (e == NULL)
{
std::cout << "Empty Employee from Query!" << std::endl;
continue;

}

std::cout << "Employee name: " << e->getName ()
<< ", id: " << e->getId() << " boss: "
<< ((m != NULL) ? m->getName() : "[no boss]")

<< std::endl;

// remember to the close statement when done
stmt.close();

// always remember to close the statement when done
stmt.close();

db.endVersionAccess () ;

db.close () ;

Working with SQL

Matisse C++ Programmer’s Guide

10 Optimization

Installing Sample Applications

To install the sample applications for this section and the next:
1. Follow the instructions in Before Running the Examples on page 6.
2. Change to the chaps 10 11 directory in your installation (under cxx_examples).

3. Load company.odl into the database. From the Enterprise Manager, select your database and right
click on ‘Schema->Import ODL Schema’, then select company.odl.

4. Generate C++ class files.
mt sdl stubgen --lang cxx -f company.odl

5. Compile and link the application with the appropriate makefile (see Compiling the Examples on
page 6).

6. Launch the application:
load localhost example
newmanl localhost example JOHN DOE000025 10 201
newman2 localhost example JOHN DOE000061 5 301

delete localhost example

Creating Multiple Objects

When an application needs to create several objects, it is more efficient to have the server allocate
multiple objects in one call rather than one at a time inside of a loop. To accomplish this, use the
MtClass::createInstances (num) method, which returns an Mtobjectarray<>. For example, to create
count instances of the class Employee:

MtObjectArray<Employee>
emps (Employee: :getClass (db)) .createInstances (count) .typeless());
for (int i = 0; 1 < count; i++)
{
Employee &e = emps[i];
// set attributes for employee i
e.setFirstName(...);
// etc
}
// commit (or rollback) still required
// etc

27 Optimization

Matisse C++ Programmer’s Guide

Note that Employee: :getClass (db) is a generated static method for Emp1oyee which returns an instance
of MtClass. Since the MtClass: :createInstances () method returns an MtObjectArray<MtObject> (an
array of generic Mtobject), it must be converted to typeless form to be used in the copy constructor for
MtObjectArray<Employee>; this is accomplished by the MtobjectArray<>::typeless () method.

When creating a large quantity of objects of different classes, an application can still optimize client-
server traffic by preallocating OIDs. A block of OIDs can be preallocated for object creation within a
transaction; whenever an object is created, it will use a preallocated OID if available, avoiding traffic to
the server. Note, however, that these OIDs are “wasted” if not used by the current transaction. See the
Matisse C++ binding API reference for complete documentation of MtDatabase: :preallocate (int

num) .

Other Operations on Multiple Objects

Generally speaking, data transferred between client and server is optimized by the client cache to avoid
unnecessary round trips. For example, when an object instance is first accessed, all the basic attribute
information (not including relationships or streamable attributes) for that instance is transferred to the
client as well, and this information will stay in the cache during the transaction. With this in mind, when
an application needs to access several objects in succession, it can optimize the data transferred between
client and server by preloading all the instances into the client cache with a single server operation, so
that each instance access will not require a separate server access. This is accomplished using the 1o0ad ()
method on an MtobjectaArray<>. For example, to access all the Employee instances which are successors
to a particular bepartment object’s team relationship:

MtObjectArray<Employee> emps = aDepartment.getTeam(); // get the array of successors
emps.load(); // load all the Employee instances
for (int i = 0; 1 < emps.size(); i++)

{
Employee &e = emps[i];
myid = e.getId(); // collect info from Employee instance

}

As a convenience, there is also an MtObjectArray<>: : remove () method which can be used to remove
all the instances without having to write a similar loop calling e . remove ().

Note that the creation of the MtobjectArray<Employee> does not populate the client cache, nor does it
create C++ object instances. It only retrieves an array of OID (unique object identifiers). The cache and
instances are affected only by access.

Eliminating Instances from the Client Cache

MtObjectArray<>::unload can be used to remove objects from the client cache (both those that were
loaded explicitly with 10ad () and those loaded automatically by access). For example, if a version access
(or transaction) is used for continued access to large numbers of objects, it can unload the objects from
the Matisse client cache after access is complete.

Optimization 28

Matisse C++ Programmer’s Guide

Clearing the C++ Instance Cache

A cache of all the C++ instances the C++ binding creates is maintained by MtDatabase. A C++ instance
is a very small “stub” to a Matisse instance consisting only of references to the relevant OID and
MtDatabase (plus any C++ overhead).

The C++ instance cache is populated automatically during object lookup. There is no explicit load
method. The cache can be configured to be cleared automatically, for example at connection or
transaction boundary. This policy can be set by MtDatabase: : setObjectCacheBoundary (). Since these
C++ stubs are very small, automatic clearing is usually adequate, but when necessary (for example,
during a lengthy version access) the cache can be cleared explicitly by calling

MtDatabase: :clearObjectCache (). See the Matisse C++ Binding API Reference for additional
discussion of these two methods.

The default clearing policy set during creation of a new MtDatabase is NO_BOUND, which means that the
cache can only be cleared explicitly; either by a call to c1learobjectCache () or as would happen during
object cleanup when the MtDatabase is destroyed (in the Mt Database destructor).

In either case (automatic or explicit), the C++ instance cache is cleared completely. There is no method
for removing only selected C++ instances.

The client cache and C++ instance cache operate independently. That is, a C++ instance may be cached
when the corresponding Matisse instance is not, and vice-versa.

Using Pointers

Within the binding, pointers to C++ instances are only used in a few cases where existence needs to be
confirmed (for example, during an index lookup). All other cases use a C++ reference; this design helps
avoid accumulation of dangling pointers to cache instances that no longer exist. However, use of pointers
cannot be strictly enforced as it is only a design pattern, therefore, use caution when using pointers. For
example, when the C++ instance cache clearing policy is TIME BOUND (transaction), do not hold pointers
across transaction boundaries.

29 Optimization

Matisse C++ Programmer’s Guide

11 Additional Topics

Arrays

The C++ binding defines two template classes to be used by API methods which pass or return arrays.

* MtObjectArray<> is used only for arrays of Matisse objects and provides an API which includes
methods to access the individual objects using the [] operator as well as methods supporting
conversions to/from std: :vector. See Other Operations on Multiple Objects on page 28 for more
information about MtobjectArray<> and delete.cpp for examples.

* MtArray<> is used for arrays of any type which can be used as an attribute value, both C++
primitives as well as Matisse-supplied types such as Mt Timestamp. The Mtarray<> class also
provides element access via the [] operator, but additionally, it is derived from Mtvalue and
therefore inherits methods to access the type, size, and so on. For example:

// a Department has a list of integers in the Days attribute
MtArray<int> days = thisDepartment.getDays() ;
for (int i = 0; 1 < days.getSize(); i++)
{
std::cout << 1 << " : " << days[i] << std::endl;
}

// make a new array and set 'Days' attribute

// previously allocated array, 'myDays' to use..

int *myDays =; // can be allocated or stack based

// make new int array and let it borrow the pointer

MtArray<int> newDays = newlntegers (mySize, myDays, MtPointerBorrow) ;
for (1 = 0; 1 < newDays.getSize(); i++)

newDays[i] = ...;

thisDepartment.setDays (newDays) ;

See the Matisse C++ Binding API Reference (SMATISSEHOMES/docs/cxx/api/index.html) for the full
API and documentation on Mtvalue and MtArray Instance creation.

Namespaces

The C++ binding defines and uses the matisse namespace; all core classes for the binding are defined
under the space. Any user generated code, by default, contains no namespace specification and is
therefore in the top level (: :). If the -—-1n namespace option is passed to mt _sd1, the code will be
generated with the namespace specification for namespace. The namespace specification affects how the
scope of the classes as well as the search path used by the default object factory
(MtDynamicObjectFactory) to create the proper C++ class based on the database object class.

If a class is in a namespace, then the header will put all definitions within a namespace <name> { } and
in order to use that class in user applications, the class name must be fully qualified unless the module
contains a using namespace <name>. For example, to refer to the MtDatabase class in a source file
without a using clause, it would be referred to as matisse: :MtDatabase.

Ad(ditional Topics 30

Matisse C++ Programmer’s Guide

For more information on namespaces, refer to a C++ reference such as The C++ Programming Language
by Bjarne Stroustrup.

Error Handling

Example applications newman1 . cpp and newman?2 . cpp demonstrate how to break a complex update up
into a series of short transactions so that any exceptions resulting from invalid data will not roll back
valid data. See the comments in newman1 . cpp for more information and instructions on running the
applications. See /nstalling Sample Applications on page 27 for installation instructions.

for (int i = 0; i < newManagerCount; i++)
{
try
{
actualTransCount++;
db.startTransaction () ;

// find the employee by name lookup; in this simple

// example, this lookup should be moved outside the

// loop, since the search criteria do not change, and

// left here for example only as we use the logic of

// finding Employee to commit/rollback transaction.

Employee *e =

dynamic cast<Employee*>(Person::lookupPersonName (db, asstLastName,
asstFirstName)) ;

if (e != NULL)
{
// create a new manager
Manager &m = Manager::create (db);
std::ostringstream osl;
osl << "JACK";

std::ostringstream os2;
0s2 << "MORRISON" << std::setw(6) << setfill('0') << useld;

// manager attributes
m.setFirstName (osl.str());
m.setLastName (0s2.str());
m.setId(useld);

// set the assistant
m.setAssistant (*e);

db.commit () ;
actualCreateCount++;
}
else
{
std::cerr << "could not find " << asstFirstName << " "
<< asstLastName << std::endl;
if (db.isTransactionInProgress())
{
db.rollback () ;

}
actualAbortCount++;

31 Additional Topics

Matisse C++ Programmer’s Guide

}
// an exception during create will rollback transaction
catch (MtException& mte)
{

if (db.isTransactionInProgress|())

{

db.rollback();

}

actualAbortCount++;

std::cerr << mte << std::endl;

std::cerr << "At transaction #: " << i
<< ", id: " << useld << std::endl;
}
useId++; // update for the next employee id
}
try

actualTransCount++;
db.startTransaction () ;

MtStatement stmt (db) ;
std::string selName = "sell"; // selection name for
// setting relationship

// similar to non-SQL version, finding the employee
// could be outside the loop, since it is static
std::ostringstream sgs_emps;
sgs_emps
<< "SELECT REF (e) FROM examples.cxx examples.chaps 10 11.Employee e WHERE
e.firstName = ""
<< asstFirstName << "' and e.lastName = '" << asstLastName
<< "' into " << selName;

stmt.execute (sgs_emps.str());

// check
MtResultSet res = stmt.executeQuery ("SELECT REF(s) FROM sell s");
if (res.next())
{
Employee *e = dynamic cast<Employee*>(res.getMtObject (1l));
std::cout << e->getFirstName () << " " << e->getLastName ()
<< std::endl;
}
else
{
std::cerr << "could not find " << asstFirstName << " "
<< asstLastName << std::endl;

std::ostringstream sgs_man;

// buld the insert command
sgs man << "INSERT INTO examples.cxx examples.chaps 10 11.Manager (firstName,
lastName, id, assistant) Values ("
<< "'JIM', '"JACKSON" << std::setfill('0') << std::setw(6)
<< useld << "', "
<< useld << ", " << selName << ");";

Additional Topics

32

int res = stmt.executeUpdate(sgs man.str());

std::cout << "Update: " << sgs man.str() << std::endl
<< "Result : " << res << std::endl;

if (res != 1)

{
// if insert command didn't have an exception,
// result would be 1, so we should not reach this
std::cerr << "Should not be here!" << std::endl;
// but let continue
}
db.commit () ;
actualCreateCount++;
}
catch (MtSQLException &mtsqgle)
{
std::cerr << mtsqgle << std::endl;
if (db.isTransactionInProgress())
{
db.rollback();
}
actualAbortCount++;
}
catch (MtException &mte)
{
std::cerr << mte << std::endl;
if (db.isTransactionInProgress())
{
db.rollback();
}
actualAbortCount++;
}

useId++;

Matisse C++ Programmer’s Guide

33

Additional Topics

Matisse C++ Programmer’s Guide

12 Working with Database Events

This section illustrates Matisse Event Notification mechanism. The sample application is divided in two

sections. The first section is event selection and notification. The second section is event registration and

event handling.

Running EventsExample

This example creates several events, then manipulates them to illustrate the Event Notification
mechanism.

1. Follow the instructions in Before Running the Examples on page 6.
2. Change to the events directory in your installation (under cxx examples).

3. Compile and link the application with the appropriate makefile (see Compiling the Examples on
page 6).

4. Launch the application:
Note that to run the example, you need to open at least 2 command line windows.
EventsExample localhost example N

EventsExample localhost example S

Events Subscription

This section illustrates event registration and event handling. Matisse provides the MtEvent class to
manage database events. You can subscribe up to 32 events (MtEvent .EVENT1 to MtEvent.EVENT32)
and then wait for the events to be triggered.

const int TEMPERATURE CHANGES EVT = MT EVENTI1;
const int RAINFALL CHANGES EVT = MT EVENT2;
const int HIMIDITY CHANGES EVT = MT EVENT3;
const int WINDSPEED CHANGES EVT = MT EVENT4;

// Open the connection to the database
dbcon.open () ;

matisse::MtEvent &subscriber = *new matisse::MtEvent (dbcon) ;

// Subscribe to all 4 events

::MtEvent eventSet = TEMPERATURE CHANGES EVT |
RAINFALL CHANGES EVT |

HIMIDITY CHANGES EVT |

WINDSPEED CHANGES EVT;

subscriber.subscribe (eventSet) ;

::MtEvent triggeredEvents;
// Wait 1000 ms for events to be triggered

Working with Database Events

34

Matisse C++ Programmer’s Guide

// return false if not event is triggered until the timeout is reached

if (subscriber.wait (1000, &triggeredEvents)) {
cout << "Events (#" << 1 << ") triggered:" << endl;

cout << (((triggeredEvents & TEMPERATURE CHANGES EVT) > 0)

<< "Change in temperature" << endl;
} else {

cout << "No Event received after ~1 sec\n" << endl;

cout << "Unsubscribe to 4 Events" << endl;
// Unsubscribe to all 4 events
subscriber.unsubscribe () ;

// Close the database connection
dbcon.close();

Events Notification

This section illustrates event selection and notification.

const int TEMPERATURE CHANGES EVT = MT EVENT1;
const int RAINFALL CHANGES EVT = MT EVENT2;
const int HIMIDITY CHANGES EVT = MT EVENT3;
const int WINDSPEED CHANGES EVT = MT EVENT4;

// Open the connection to the database
dbcon.open () ;

matisse: :MtEvent ¬ifier = *new matisse::MtEvent (dbcon) ;

::MtEvent eventSet;

eventSet = 0;

eventSet |= TEMPERATURE CHANGES EVT;
eventSet |= RAINFALL CHANGES EVT;
eventSet |= HIMIDITY CHANGES EVT;

notifier.notify(eventSet);

// Close the database connection
dbcon.close();

More about MtEvent

PR LR N 1) u)

As illustrated by the previous sections, the MtEvent class provides all the methods for managing database
events. The reference documentation for the MmtEvent class is included in the Matisse C++ Binding API
documentation located from the Matisse installation root directory in docs/cxx/api/index.html.

35

Working with Database Events

Matisse C++ Programmer’s Guide

Appendix A: Example Schema

children \[/ 0.*

Person

Public Class

W firstMarme: string <1..,
11l lastMame: string<1... 01
" comrment: string -

" age: integer father
" phota: image

spouse

= comrmentDicticam...
personiameilasth...

.

|'ﬁ'|

spouse | 0.1 -‘—\

Employee
Public Class

W hireDate: date
1.*| ¥ salary: numeric 0.1

team assistant

-'ﬁ'u

Manager

Public Class

1
reportsTo

n.*

assistantOf

module examples {
module cxx examples {
module chaps 6 7 8 {

interface Person : persistent

{
attribute String<l6> firstName;
attribute String<l16> lastName;
attribute String Nullable comment;

Example Schema

36

Matisse C++ Programmer’s Guide

attribute Integer Nullable age;
attribute Image Nullable photo = NULL;
relationship Person spouse[0,1] inverse Person::spouse;
readonly relationship Person father[0,1] inverse Person::children;
relationship Set<Person> children inverse Person::father;
mt index personName
criteria {person::lastName MT ASCEND},
{person::firstName MT ASCEND};
mt _entry point dictionary commentDict entry point of comment
make entry function "make-full-text-entry";

}i

interface Employee : Person : persistent

{

}i

attribute Date hireDate;

attribute Numeric salary;

readonly relationship Set<Manager> assistantOf inverse Manager::assistant;
relationship Manager reportsTo inverse Manager::team;

interface Manager : Employee : persistent

{

}i

relationship Set<Employee> team[l,-1] inverse Employee::reportsTo;
relationship Employee assistant[0,1] inverse Employee::assistantOf;

37

Example Schema

Matisse C++ Programmer’s Guide

Appendix B: Generated Methods

The following methods are defined in the C++ class files generated by mt sd1. Definitions are in
class.h, inlines in class.hpp, and other source in class. cpp.

For schema classes

The following methods are created for each schema class. These are class methods (also called static
methods): that is, they apply to the class as a whole, not to individual instances of the class. These
examples are taken from person.

Countinstances getInstanceNumber (const MtDatabase &db)
Open an iterator MtObjectIterator<Person> instancelterator (const MtDatabase &db)

Sample Person &create (const MtDatabase &db))
constructor

Sample std::ostream &operator<<(std::ostream &o, const Person &obj)
ostream <<)) ')
operator This non-class method overloads the insertion operator for streams, which enables
code such as:
cout << aPerson << endl

Get descriptor MtClass& getClass (const MtDatabase &db)

Returns an Mtclass object. This method supports advanced Matisse programming
techniques such as dynamically modifying the schema.

Factory MtObject* newStub (const MtDatabase &db, ::MtOid oid)

constructor)))))
This constructor is called by MtobjectFactory. It is public for technical reasons

but is not intended to be called directly by user methods.

For attribute descriptors
The following methods are created for each attribute descriptor. For example, if the ODL definition for

class check contains attribute descriptors bate and amount, the check.h file will contain the methods
getDate and getAmount. This and following examples are taken from Person: : firstName.

For all attribute descriptors
Remove value removeFirstName ()

For scalar (non-list-type) attribute descriptors only

Get value getFirstName ()

Set value setFirstName (const std::string & val)

Generated Methods 38

Matisse C++ Programmer’s Guide

Get descriptor getFirstNameAttribute (const MtDatabase &db)
Returns an Mtattribute object. This method supports advanced Matisse

programming techniques such as dynamically modifying the schema.

For list-type attribute descriptors only

The following methods are created for each list-type attribute descriptor. These examples are from

Person: :photo.
Get value MtArray<unsigned char> getPhoto ()
Setvalue setPhoto(const MtArray<unsigned char> & val)

Get elements getPhotoElements (::MtByte *value, unsigned int len, unsigned int
offset=MT CURRENT OFFSET)

Set elements setPhotoElements (::MtByte *value, unsigned int len, unsigned int
OffS@t=MT_CURRENT_OFFSET, bool discardAfter=MT_FALSE)

Count elements getPhotoSize ()
Get descriptor MtAttributes& getPhotoAttribute (const MtDatabase &db)

Returns an Mtattribute object. This method supports advanced Matisse
programming techniques such as dynamically modifying the schema.

For all relationship descriptors

The following methods are created for each relationship descriptor. These examples are from

Person: :spouse.
Clear successors clearSpouse ()
Get descriptor MtRelationship& getSpouseRelationship (const MtDatabase &db)

Returns an MtRelationship object. This method supports advanced Matisse
programming techniques such as dynamically modifying the schema.

For relationship descriptors where the maximum cardinality is 1

The following methods are created for each relationship descriptor with a maximum cardinality of 1.
These examples are from Manager: :assistant.

Get successor Employee* getAssistant ()

Set successor setAssistant (const Employee &succ)

For relationship descriptors where the maximum cardinality is greater than 1

The following methods are created for each relationship descriptor with a maximum cardinality greater
than 1. These examples are from Manager: : team.

Get successors MtObjectArray<Employee> getTeam()

39 Generated Methods

Matisse C++ Programmer’s Guide

Open an iterator MtObjectIterator<Employee> teamlterator ()
Count successors getTeamSize ()

Set successors setTeam(const MtObjectArray<Employee> &succs)

Add successors Insert one successor before any existing successors:

prependTeam (const Employee &succ)

Add one successor after any existing successors:

appendTeamp (const Employee &succ)

Add multiple successors after any existing successors:
appendTeam (const MtObjectArray<Employee> &succs)

Remove removeTeam(const Employee &succ)
successors removeTeam(const MtObjectArray<Employee> &succs)

Remove specified successors.

For index descriptors

The following methods are created for every index defined for a database. These examples are for the
only index defined in the example, Person: :personName. The number of attributes in the lookup and
iterator methods is dependent on the number of criteria defined for the index (in this case, two, lastName
and firstName).

Lookup Person* lookupPersonName (const MtDatabase &db, const std::string &
lastName, const std::string & firstName)

Open an iterator MtObjectlIterator<Person> personNamelterator (const MtDatabase &db,
const std::string & fromLastName, const std::string &
fromFirstName, const std::string & tolastName, const std::string
& toFirstName, const MtClass* filterClass=NULL, ::MtDirection
direction=MT DIRECT, int numObjPerBuffer=MT MAX PREFETCHING)

Get descriptor MtIndex& getPersonNamelIndex (const MtDatabase &db)

Returns an Mt Index object. This method supports advanced Matisse programming
techniques such as dynamically modifying the schema.

For entry-point descriptors

The following methods are created for every entry-point dictionary defined for a database. These
examples are for the only dictionary defined in the example, Person: : commentDict.

Lookup Person* lookupCommentDict (const MtDatabase &db, const std::string
&value)

Open an iterator MtObjectIterator<Person> commentDictIterator (const MtDatabase &db,
const std::string &value, const MtClass* filterClass=NULL, int
numObjPerBuffer=MT MAX PREFETCHING)

Generated Methods 40

Get descriptor

Matisse C++ Programmer’s Guide

MtEntryPointDictionary& getCommentDictDictionary(const MtDatabase
&db)

Returns an MtEntryPointDictionary object. This method supports advanced
Matisse programming techniques such as dynamically modifying the schema.

41

Generated Methods

	Matisse® C++ Programmer’s Guide
	Contents
	1 Introduction
	Scope of This Document
	Before Reading This Document
	Additional Documentation for the C++ Binding

	2 Instructions for C++ Examples
	Before Running the Examples
	Compiling the Examples
	Generating Class Documentation

	3 Connection and Transaction
	Building the Examples
	Read Write Transaction
	Read-Only Access
	Version Access
	Other Options

	4 Working with Objects
	Running ObjectsExample
	Creating Objects
	Listing Objects
	Deleting Objects

	5 Working with Values
	Running ValuesExample
	Setting and Getting Values
	Removing Values
	Streaming Values

	6 Working with Relationships
	Running RelationshipsExample
	Setting and Getting Relationship Elements
	Adding and Removing Relationship Elements
	Listing Relationship Elements
	Counting Relationship Elements

	7 Working with Indexes
	Running IndexExample
	Index Lookup
	Index Lookup Count
	Index Entries Count

	8 Working with Entry-Point Dictionaries
	Running EPDictExample
	Entry-Point Dictionary Lookup
	Entry-Point Dictionary Lookup Count

	9 Working with SQL
	Running SQLExample
	Retrieving Values
	Retrieving Objects from a SELECT statement

	10 Optimization
	Installing Sample Applications
	Creating Multiple Objects
	Other Operations on Multiple Objects
	Eliminating Instances from the Client Cache
	Clearing the C++ Instance Cache
	Using Pointers

	11 Additional Topics
	Arrays
	Namespaces
	Error Handling

	12 Working with Database Events
	Running EventsExample
	Events Subscription
	Events Notification
	More about MtEvent

	Appendix A: Example Schema
	Appendix B: Generated Methods
	For schema classes
	Count instances
	Open an iterator
	Sample constructor
	Sample ostream�<< operator
	Get descriptor
	Factory constructor

	For attribute descriptors
	For all attribute descriptors
	Remove value

	For scalar (non-list-type) attribute descriptors only
	Get value
	Set value
	Get descriptor

	For list-type attribute descriptors only
	Get value
	Set value
	Get elements
	Set elements
	Count elements
	Get descriptor

	For all relationship descriptors
	Clear successors
	Get descriptor

	For relationship descriptors where the maximum cardinality is 1
	Get successor
	Set successor

	For relationship descriptors where the maximum cardinality is greater than 1
	Get successors
	Open an iterator
	Count successors
	Set successors
	Add successors
	Remove successors

	For index descriptors
	Lookup
	Open an iterator
	Get descriptor

	For entry-point descriptors
	Lookup
	Open an iterator
	Get descriptor

