Matisse®
C APl Reference

January 2017

Matisse C API Reference
Copyright © 2017 Matisse Software Inc. All Rights Reserved.

This manual and the software described in it are copyrighted. Under the
copyright laws, this manual or the software may not be copied, in whole or in
part, without prior written consent of Matisse Software Inc. This manual and
the software described in it are provided under the terms of a license between
Matisse Software Inc. and the recipient, and their use is subject to the terms of
that license.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-
7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. and
international patents.

TRADEMARKS: MATISSE and the MATISSE logo are registered trademarks
of Matisse Software Inc. All other trademarks belong to their respective
owners.

PDF generated 7 January 2017

Contents

Functionsby Themes i, 8
1.1 Database Connection 8
SESSION . . e 8
SUMMAIY . . o 8

Listof Functions 9

1.2 Database ACCESSttt 9
Transaction e 9

Version ACCESS . . . oottt 10
SUMMANY . . o 10

Listof Functions i 10

1.3 DatabaseReading i 11
OVEeIVIEW . . o o e 11

Schema AcCeSS.ot 12

Object Description. 12
ValueofaProperty 12
Relations 12
Multimedia Streaming 13

Loading Objects i 13

Access Through Entry Points 13

Access Through Indexes. 13
Information about Modified Successors 14

Listof Functions i 14

1.4 Database Modification 20
OVEeIVIEW . . oo e 20

Object Validation. i, 21
Multimedia Streaming L 21

Entry Points. 21

Indexes 21

Listof Functions 21

1.5 ObjectStreaming 23
OVEIVIEW . . o 23

Listof Functions 24

1.6 Class Description ACCESSot 26
Listof Functions i 26

1.7 Embedded SQL 29
Listof Functions 29

1.8 ErrorHandling 30
Status Management 30
SUMMaANY . . oo e e 31

Listof Functions i 31

1.9 Miscellaneous e 31
Contents 3

Datesand Times 31

NUMENC TYPES. . . o ot e 31

Print Function. 31

LOCKS . e 31

Save Time Enumeration 32

Memory Management 32

Listof Functions. 32

Type Reference 36
2.1 Matisse Programming Typeso i, 36
2.2 MatisseData Typesoiiiii i 39
2.3 Type CorrespondencCescuuiuimie i 40
Detailed APIReference i, 42
ADOrtTranSactiont 42
AAdSUCCESSOT e+ v v vttt e 43
AdASUCCES SO S v vt vttt et e 45
A110CateConteXt v 47
CloSESEraAM. & vttt ettt ettt e e e 47
CommitTransactioniuiiininnnnnnnnn.. 48
ConnectDatabase ...ttt 50
Createlb el . v e 52
CurrentDate . o v it 53
DisconnectDatabasSe 53
ENdVErSiOonACCESS « vttt ittt ettt e e 54

o 54
EVentNOLIf Y . i e 54
EventSubsribe. 55
EventUnsubscribeoiiiiiiniieannn.. 55
EventWait « vt 55

FaillUre oottt 56
Y 56
FreeConteXRt . vttt e 57
FreelD) eCt S e vttt et e 57
GetAddedSUCCESSOTS « vttt e ittt et it 58
GetALIALtributes .. u i 60
GetAllInverseRelationshipS.......uvvvnnennn.... 62
GetAllRelationships «vvi it e 66
GEtALLISUDCLASSES t vttt ittt e 67
GetAllSUPETClasSeS v v vt iite et et 69
GetAttribute. 71

GEEC LA S ottt ettt e e e 71
GetClassAttribute, 72
GetClassRelationshipviiiiiiiiiinnnennnnn. 73
GetConfigurationInfo 74
GetConnectionOptiont 74

Matisse C API Reference

GetDImMEeNSI0N. vttt it e e 76

(€1 o o £ 77
GetINdexTIN O, ¢ vttt e et e 78
GetInstancesSNUMDEerttt et et ee et 79
GetLIisStELemMEentsS oottt e 80
GetNumDataBytesReceived.cvuvirennnnnn... 82
GetNumDataBytesSentc.viii i 82
GetODTECECLASS & vttt et ettt e 83
GetObjectsFromEntryPoint........ovviiiiiinnnnn. 83
GetObJectsSFromINdeX « v v v vt ie et i i ee 86
GELPIedeCESSOTS « vttt ettt 88
GetRelationship ..t 90
GEtREMOVEASUCCESSOTS vttt ettt ettt e e e e e eee e 91
GEELSUCCESSOTS t vttt ettt ettt ettt 93
GELUSEIE LT O . « v ittt et ettt e e 95
GELVALUE . o ittt ettt e 95
INtervalAdd. « v e 102
INtervalComMPare . vv e e ettt eee e e 102
IntervalDivide 103
IntervalBuild ... e 103
IntervalMultiply v i e e 104
INtervalPrint ... e 104
IntervalSubtract ..ot 105
IsInstanceOf. o vt e 105
IsPredefinedObject ..o vt 106
LoadObD T ECE S, v vttt 107
LOCKOD T ECE S v vttt e 108
LockObjectsFromEntryPointovuiuiiunnnn.n 110
MaKEUSETELTOT «t ittt ettt ettt e s 111
NexXtINdeXENErY v v vttt et e e e 111
NEeXtOD T ECE . vttt e e 113
NEeXtEOD T CES . ettt e 114
L S0 = et oY= S 115
NEXEVETSION. « vttt ettt et et e e e 116
NUMETICAA. vttt ettt e e 116
NUmMericBuIld. .ot e 117
NUMETiCCOMPATE « vttt ettt ettt e e 117
NUmericDIivide ...t e e 118
NumericFromDouble . ..ottt i 118
NUMETriCEFTOMLONG « vttt ettt et e e e 119
NumericGetPrecisSion 119
NUMEricGetSCAle vttt e e 119
NUmericMultiply .ottt e 120
NUMETICPrint. o vttt e 120
NumericToDOUDLE ...ttt et e e e 121
Contents 5

NUME LI CTOLONG . & v vttt et ettt e ettt e e e e e e e 121

NUMETICROUNA . vttt ettt ettt e et e et e e e e 121
NUMETiCSUbLract «.u vttt i 123
0D ECESIZE v e 123
@ <] 124
OpenAttributesStreamc.vuvirieennnnennn. 124
OpenEntryPointStreamc.uuuiinennnnnnn... 125
OpenIndexEntriesStream.........c.cuouuveeeenennnn. 126
OpenIndexObjectsSStream. .o v eeenn .. 129
OpenInstancesStream ... e v et et iiie e 132
OpenInverseRelationshipsStream 134
OpenOwnInstancesSSEream . v vt i e ee e 136
OpenPredecessorsSStream. v v i iiee e 137
OpenRelationshipsStream.o.oeueeeeenn... 138
OpPenSuUCCEeSSOrSSErEam .o v vt vttt i i it i e e e e 139
OpenVersionStream ... 140
= o 140
Praint .ot 141
REMOVEALLSUCCESSOLS « vttt e ettt et e e e i i e e 141
REMOVEOD T ECT s ot et e 142
REMOVESUCCESSOTS &ttt vt et ittt aee e e e 143
REMOVEVALUE . ettt ettt e et e e e 145
SetConnectionOpPLion « ... 147
SetListElementst 149
SEtOWNPASSWOLA. « v vttt et 151
SEt VAU « ittt ettt 151
SOLALLIOCSEME . o v e e e e e e 155
SOLEXECDITrE . v ittt e 155
SOLFreeStmt . o ittt 157
SOLGetColumnInto . v v vt e 158
SQOLGetParamDimenNSIONS & v vt e vttt et ettt 158
SQLGetParamListElements . v v vt vt it e e 159
SOLGetParamValue e e 160
SQLGetROWLIStELEMeNntS & v v vt ittt et et e e e 161
SOLGEtROWVALUG. « vttt it et e e et e et 163
SOLGetStMETINEO. & v v e e e e e e 164
SOLGE L SEME T YD . « v v it e e 166
SOLNEXE + vt e e 167
SOLNUMRESULECOLS « vt ot e e e e e e e e 168
SOLOPENSELEAIM. « v vttt e e ettt et et 168
StartTransaction ...t 168
StLArtVersSionACCESS « vttt i e e e e 169
SUC S « vttt ettt et e e e e e e 170
TimestampAdd. v v vttt e 170
TimestampBuild. « v v v ettt 171

Matisse C API Reference

TimeStampPCOMPATE v v vttt ettt ees 172

Contents

TimestampDiff e 172
TimestampGetCUTrTrent .. .v vt ittt eee e 173
TimeStampPrint e 173
TimestampSubtractot 174
ErrorCode Reference 176
... 214

7

1

Functions by Themes

1.1 Database Connection

Session

Summary

The following list describes the necessary steps required to access a database. It
is important to adhere closely to the following sequence of actions when
accessing the database:

Allocate a connection structure

Set the connection options

Connect to a database

Select the connection

Open a transaction or select a version

Launch the operations on the database

Commit or abort the transaction or end the version access

Deselect the connection

® ¢ O O O 6 6 o o

Disconnect
@ Deallocate the connection structure
A single client application may provide several databases. The user must open

one connection per database.

Once the database connection is selected, the client has direct access to the
data, either within a transaction or within a version access. Within a transaction,
the client can modify data. Within a version access, the client can only read
data.

You can set an explicit lock on objects within a transaction.

Several databases can be operated simultaneously. For example, you can start a
transaction on database A, select a database B then work on B, then return to A.

You must adhere to the following guideline:

@ The objects of a given database cannot reference those of another database.
If this situation occurs Matisse may generate an error. However, if the
referenced object is any object of the current database, no error is generated.

@ Connections to several databases can be opened simultaneously.

@ The database connection must be selected in order to have direct access to
the data. Access to data occurs either during a transaction or from within a
version access.

Matisse C API Reference

List of Functions

@ Before disconnecting from the database, the current connection must
be deselected.

MtSTS MtAllocateContext (MtContext *connection)
MtSTS MtSetConnectionOption (MtContext connection,
MtConnectionOption opt, ...)
MtSTS MtGetConnectionOption (MtContext connection,
MtConnectionOption opt, ...)
MtSTS MtConnectDatabase (MtContext connection,
MtString host,
MtString databaseName,
MtString userName,
MtString password)

MtSTS MtDisconnectDatabase (MtContext connection)

1.2 Database Access

Transaction

A transaction is the smallest granularity operation on a database. It is atomic:
all the elements of the transaction either succeed or fail. If they fail, the
transaction is aborted. A transaction abort may be initiated by the server or by
the user.

Access to the database depends on a wait-time parameter.

This parameter is set on a connection by calling
MtCtxSetConnectionOption. It can be set at any time.

Within a transaction, access to the database may be blocked for the following
reasons:

@ If competing transactions mutually prohibit access (deadlock), one of the
transactions is aborted (depending on transaction priority) and the cache is
flushed.

@ If the transaction is blocked for a period longer than the wait-time or if a
Matisse error occurs, an error status is initiated.

When exiting a transaction, the cache is flushed: all objects read into client
memory during the transaction are deleted and all locks on these objects are
released.

A transaction is associated with only a single connection.

The number of locks created is proportional to the number of objects a
transaction modifies. Therefore, transactions modifying objects should be as
short as possible to avoid affecting other users.

Functions by Themes

Version Access

Summary

List of Functions

The Matisse server manages the successive versions of modified objects.

Matisse allows access to any version previously saved.

Through a saved version, you can work on a consistent view of the database.

Any value read within a version access is deleted from the cache when the
access is terminated.

Through this mechanism, the user can read objects or values outside a
transaction context without conflicting with another user.

A version access is performed within the function
MtCtxStartVersionAccess. The access ends with a call to

MtCtxEndVersionAccess.

Within the scope of these functions, any read operation is relative to the version
of the objects corresponding to the time specified in
MtCtxStartVersionAccess. Any modifications to the version is not allowed
and not supported.

For any given database, you can determine all the versions that have been
defined at different logical times. You can list these versions by using the
functions MtCtxOpenVersionStream, MtCtxNextVersion and
MtCtxCloseStream.

*

Historical versions are stamped using a unique string for each version.

Within the scope of an MtCtxStartVersionAccess -
MtCtxEndVersionAccess, you have access to a state of the database that
has been previously saved.

Through a version access of the current state, you can read the latest version
of objects outside a transaction context.

Within the scope of MtCtxStartVersionAccess -
MtCtxEndVersionAccess, you are not allowed to perform any
modifications.

Historical versions give a consistent view of the database at a specific time
and are available outside of any transactional context.

To access a specific version, specify the string returned at the moment of
MtCtxCommitTransaction, as an argument of

MtCtxStartVersionAccess.

MtSTS MtCtxAbortTransaction (void)

MtSTS MtCtxCommitTransaction (MtString prefix,
MtString* timeName)

MtSTS MtCtxEndVersionAccess (void)
MtSTS MtCtxGetWaitTime (MtLockWaitTime* waitTime)
MtSTS MtCtxStartVersionAccess (MtString timeName)

10

Matisse C API Reference

MtSTS MtCtxSetWaitTime (MtLockWaitTime waitTime)
MtSTS MtCtxStartTransaction (MtTranPriority priority)

1.3 Database Reading

Overview

Once an object is loaded or read, the value of the object is stored in the client
cache. Using this value or extracting the values of the object properties does not
generate server access. In other words, all operations are performed on the
client cache and not on the database.

CAUTION: Loading an object does not imply loading the successors of
the object.

There are several types of get functions which are further described in the
following sections. A brief review of Matisse functions is presented below.

Each Matisse function taking a schema object as an argument has two slightly
different forms depending on whether you specify the schema object by its
identifier or using a character string. This is why many functions possess two
slightly different variants. The CreateObject function, for example, has two
variants - MtCtxCreateObject and MtCtx CreateObject.
MtCtxCreateObject take a character string to specify the class while
MtCtx_CreateObject takes an identifier to specify the class.

For some Get functions, the number of possible variants increases. A Get
function, as its name implies, gets a copy of a value from a database. The
function may allocate a buffer to store a copy of this value, and then return a
pointer to this buffer, or it may store a copy of this value in a buffer allocated
by the calling program.

A Get function that allocates a buffer, begins with the letters MtCtxMGet or
MtCtx_MGet (depending on whether you specify a character string or an object
identifier.) A Get function that does not allocate a buffer, begins with the letters
MtCtxGet or MtCtx_Get. Depending on the kind of Get function called, the
following guidelines must be observed:

MtCtxGet or MtCtx Get: When calling a Get function that does not allocate
space for the value, the programmer must declare a buffer of the appropriate
type and pass the address of this buffer as an argument. The Get function then
copies the retrieved value into this buffer.

MtCtxMGet or MtCtx MGet: When calling a Get function that allocates
memory for a value, the user must declare a pointer to a variable of the
appropriate type. The address of this pointer must be passed as an argument to
the Get function that allocates memory. The address that the function stores in

Functions by Themes

11

Schema Access

Object
Description

Value of a
Property

Relations

this pointer can be used by the calling program to read the retrieved value.
When manipulation of the data is no longer required, the program should
deallocate the data with the C free function.

Any schema object can be accessed through entry-points, loops on the class
instances, or through navigation among objects. However, Matisse offers quick
functions that grant direct access to the objects.

You can obtain explicit information on any Matisse object. Specifically, you
can determine:

@ The object’s class

@ If the object is part of the original meta-schema

@ If the object is, or is not, an instance of a specific class

The value of an object is made up of a set of associations of the type
property/property value.

The possible properties of an object are those defined by the object’s class (and
its superclasses), as well as the inverse properties of the relationships for which
the class is a valid successor.

Attribute values are dynamically typed. The type of the attribute value is
determined at run time.

Note, however, that in Matisse, when a property is unassigned, it has a default
value. The default value for a relationship is an empty array of objects. The
default value of an attribute is inherited from MtDefaultvalue.

The value of the default value (when the MtDefaultvalue of the attribute has
not been specified) is of type MT NULL.

Matisse manages inverse links.

When a link is added or deleted between two objects (via a relationship) the
inverse link is automatically updated between both objects.

The successor, through the inverse relationship of an object, can then be
considered as the predecessor of the object through the direct property. These
concepts are symmetric.

You can search for predecessors using specific functions defined in Matisse. It
may be easier, however, to use functions that search for successors, even when
you are searching for predecessors. To do so, you must specify the inverse
relationship.

The successors of a relationship can be ordered.

12

Matisse C API Reference

Multimedia
Streaming

Loading Objects

Access Through
Entry Points

Access Through
Indexes

In addition to the functions that allow you to get all successors and
predecessors of an object through a relationship, you can use a stream to
enumerate all the successors or predecessors (see section 1.5, Object

Streaming).

Large attributes of type list can be used to store multimedia data such as audio
or video. For instance, if you access a video stored as a list of bytes, you will be
able to read the video by blocks directly from the server and send it to a viewer
without having the video copied to the client cache. The functions
MtCtxGetListElements and MtCtx GetListElements implement this
interface.

When accessing an attribute or a relationship in an object, that attribute or
relationship is automatically loaded into the client cache. In addition, the
functions MtCtxLoadNumObjects and MtCtxLoadObjects allow you to
explicitly load objects into the client cache. Once the objects are loaded,
information on these objects is retrieved from the cache rather than from the
server.

An entry point enables you to access an instance using the value of one of its
properties.

Attributes are characterized by a MtMakeEntryFunction function. For a
specific attribute, when MtMakeEntryFunction is specified, any instance for
which the attribute’s value has been assigned can be accessed through one or
more keywords (strings) computed from the value of the attribute. This feature
lets you search quickly for instances based on specific indexing.

Note that a make entry function may produce empty strings. If this occurs, no
keywords are indexed and the object will not be accessible through the entry
point.

Note that entry points are not case sensitive.

In addition to the functions that allow you to retrieve objects from their entry
points, you can use a stream to enumerate all these objects (see section 1.5,

Object Streaming).

You can also retrieve schema objects by specifying only the value of their
MtName attribute.

Indexes allow access to an object stream. An index is defined by a set of one to
four criteria, in other words, attributes that are attached to the same class. The
values of the criteria may be ordered in ascending or in descending order. If an
attribute is multiple valued (i.e., a list) for an object, there will be multiple
entries for this object in the index.

Functions by Themes

13

Information

about Modified
Successors

List of Functions

Schema Access

Object Description

Attribute Value in an

Object

To scan the index, you must specify a start value and an end value. Start and
end values may be between zero and the maximum possible number of criteria
for the index. The index may be scanned in direct (the direction in which the
values were indexed) or in reverse order.

Matisse provides functions that return the list of all successors added to or
removed from an object through a specific relationship, starting from the
beginning of the transaction.

MtSTS

MtSTS

MtSTS

MtSTS

MtCtxGetAttribute (MtContext ctx, MtOid* attribute,
MtString attributeName)
MtCtxGetClass (MtContext ctx, MtOid*class,
MtString className)
MtCtxGetIndex (MtContext ctx, MtOid* index,
MtString indexName)
MtCtxGetRelationship (MtContext ctx, MtOid*

relationship,

MtSTS

MtSTS

MtSTS

MtSTS

MtSTS

MtSTS

MtSTS

MtSTS

MtSTS

MtString relationshipName)

MtCtxGetObjectClass (MtContext ctx, MtOid* class,
MtOid object)
MtCtxOpenAttributeStream (MtContext ctx,
MtStream* objectAttStream,
MtOid object)

MCtxtOpenInverseRelationshipsStream (MtContext ctx,
MtStream* objectIRelStream,
MtOid object)

MtCtxOpenRelationshipsStream (MtContext ctx,
MtStream* objectRelStream,
MtOid object)

MtCtxIsPredefinedObjet (MtContext ctx,
MtBoolean* predefinedMSP,
MtOid object)

MtCtxIsInstanceOf (MtContext ctx, MtBoolean* result,
MtOid object,
MtString className)

MtCtx IsInstanceOf (MtContext ctx, MtBoolean* result,
MtOid object,
MtOid class)

MtCtxGetDimension (MtContext ctx, MtOid object,
MtString attributeName,
MtSize rankIndex,
MtSize* dimension)

MCtxt GetDimension (MtContext ctx, MtOid object,
MtOid attribute,

14

Matisse C API Reference

MtSize rankIndex,
MtSize* dimension)
MtSTS MtCtxGetListElements (MtContext ctx, MtOid object,
MtString attributeName,
MtType type,
void* buflist,
MtSize* numElts,
MtSize firstEltOffset)
MtSTS MtCtx_GetListElements (MtContext ctx, MtOid object,
MtOid attribute,
MtType type,
void* bufList,
MtSize* numElts,
MtSize firstEltOffset)

MtSTS MtCtxGetValue (MtContext ctx, MtOid object,
MtString attributeName,
MtType* type,
void* value, MtSize* rank,
MtSize* size,
MtBoolean* defaultValueP)

MtSTS MtCtx_GetValue (MtContext ctx, MtOid object, MtOid

attribute,

MtType* type, void* value,
MtSize* rank, MtSize* size,
MtBoolean* defaultValueP)
MtSTS MtCtxMGetValue (MtContext ctx, MtOid object,
MtString attributeName,
MtType* type, void** value,
MtSize* rank,
MtBoolean* defaultValueP)

MtSTS MtCtx MGetValue (MtContext ctx, MtOid object,
MtOid attribute, MtType* type,
void** value, MtSize* rank,
MtBoolean* defaultValueP)

Relationship Value MtSTS MtCtxGetSuccessors (MtContext ctx, MtSize*
in an Object numObjects,
MtOid* successors,
MtOid object,
MtString relationshipName)
MtSTS MtCtx_GetSuccessors (MtContext ctx, MtSize*
numObjects,
MtOid* successors,
MtOid object,
MtOid relationship)
MtSTS MtCtxMGetSuccessors (MtContext ctx, MtSizex*
numObjects,
MtOid** successors,
MtOid object,
MtString relationshipName)

Functions by Themes 15

Inverse Links in an
Object

Loading Object

Entry Points Access

MtSTS MtCtx MGetSuccessors (MtContext ctx, MtSize*
numObjects,
MtOid** successors,
MtOid object,
MtOid relationship)
MtSTS MtCtxOpenSuccessorsStream (MtContext ctx, MtStream*
relStream,
MtOid object,
MtString relationshipName)

MtSTS MtCtx_OpenSuccessorsStream

(MtContext ctx, MtStream*
relStream,

MtOid object,

MtOid relationship)

MtSTS MtCtxGetPredecessors (MtContext ctx, MtSize*
numObjects,

MtOid* predecessors,

MtOid object,

MtString relationshipName)

MtSTS MtCtx_GetPredecessors (MtContext ctx, MtSize*
numObjects,
MtOid* predecessors,
MtOid relationship)

MtSTS MtCtxMGetPredecessors (MtContext ctx, MtSizex*
numObjects,
MtOid** predecessors,
MtOid object,
MtString relationshipName)
MtSTS MtCtx MGetPredecessors (MtContext ctx, MtSize*
numObjects,
MtOid** predecessors,
MtOid object,
MtOid relationship)
MtSTS MtCtxOpenPredecessorsStream (MtContext ctx,
MtStream* IRelStream,
MtOid object,
MtString relationshipName)
MtSTS MCtxt_OpenPredecessorsStream (MtContext ctx,
MtStream* IRelStream,
MtOid object,
MtOid relationship)

MtSTS MtCtxLoadNumObjects MtContext ctx, (MtSize
numObjects,
MtOid* objects)
MtSTS MtCtxLoadObjects (MtContext ctx, MtSize numObjects,
-)

MtSTS MtCtxGetObjectsFromEntryPoint (MtContext ctx,
MtSize* numObjects,

16

Matisse C API Reference

Index Access

MtOid* objects,
MtString entryPoint,
MtString dictName,
MtString className)

MtSTS MtCtx_ GetObjectsFromEntryPoint (MtContext ctx,
MtSize* numObjects,
MtOid* objects,
MtString entryPoint,
MtOid dictionary,
MtOid class)

MtSTS MtCtxMGetObjectsFromEntryPoint (MtContext ctx,
MtSize* numObjects,
MtOid** objects,
MtString entryPoint,
MtChar* dictName,
MtChar* className)

MtSTS MtCtx MGetObjectsFromEntryPoint (MtContext ctx,
MtSize* numObjects,
MtOid** objects,
MtChar* entryPoint,
MtOid dictionary,
MtOid class)
MtSTS MtCtxOpenEntryPointStream (MtContext ctx,
MtStream* entryPointStream,
MtChar* entryPoint,
MtChar* dictName,
MtChar* className,
MtSize numObjectsPerBuffer)

MtSTS MtCtx_OpenEntryPointStream (MtContext ctx,
MtStream* entryPointStream,
MtChar* entryPoint,
MtOid dictionary,
MtOid class,
MtSize numObjectsPerBuffer)

MtSTS MtCtxGetObjectsFromIndex (MtContext ctx, MtSize
numObjects,
MtOid *objects;
void *indexEntry/[],
MtSize nbOfCriteria,
MtString indexName,
MtString className)

MtSTS MtCtx_GetObjectsFromIndex (MtContext ctx, MtSize
numObjects,

MtOid *objects;

void *indexEntry/[],

MtSize nbOfCriteria,

MtOid index,

MtOid aClass)

MtSTS MtCtxMGetObjectsFromIndex (MtContext ctx, MtSize
numObjects,

Functions by Themes

17

MtOid **objects;
void *indexEntry/[],
MtSize nbOfCriteria,
MtString indexName,
MtString className)
MtSTS MtCtx MGetObjectsFromIndex (MtContext ctx, MtSize
numObjects,
MtOid **objects;
void *indexEntry/[],
MtSize nbOfCriteria,
MtOid index,
MtOid aClass)
MtSTS MtCtxOpenIndexEntriesStream (MtContext ctx, MtStream
*stream,
MtString indexName,
MtString className,
MtDirection direction,
MtSize nbOfCriteria,
void *startValues [],
void *endValues,
MtSize nbEntriesPerCall)
MtSTS MtCtx_OpenIndexEntriesStream (MtContext ctx, MtStream
*stream,
MtOid index,
MtOid class,
MtDirection direction,
MtSize nbOfCriteria,
void *startValues [],
void *endValues,
MtSize nbEntriesPerCall)
MtSTS MtCtxOpenIndexObjectsStream (MtContext ctx, MtStream
*stream,
MtString indexName,
MtString className,
MtDirection direction,
MtSize nbOfCriteria,
void *startValues [],
void *endValues,
MtSize nbObjectsPerCall)
MtSTS MtCtx_OpenIndexObjectsStream (MtContext ctx, MtStream
*stream,
MtOid index,
MtOid class,
MtDirection direction,
MtSize nbOfCriteria,
void *startValues [],
void *endValues,
MtSize nbObjectsPerCall)
MtSTS MtCtxNextIndexEntry (MtContext ctx, MtStream stream,
void *values [],
MtOid *object)

18 Matisse C API Reference

MtSTS MtCtxNextObject (MtContext ctx, MtStream, MtOid
*object)
MtSTS MtCtxNextObjects (MtContext ctx, MtStream stream,
MtOid* objects,
MtSize* numObjects)

Modified MtSTS MtCtxGetAddedSuccessors (MtContext ctx,
Successors MtSize* numAddedSuccessors,

MtOid* allAddedSuccessors,
MtOid object,
MtString relationshipName)

MtSTS MtCtx_ GetAddedSuccessors (MtContext ctx,
MtSize* numAddedSuccessors,
MtOid* allAddedSuccessors,
MtOid object,
MtOid relationship)

MtSTS MtCtxGetRemovedSuccessors (MtContext ctx,
MtSize* numRemSuccessors,
MtOid* allRemSuccessors,
MtOid object,
MtString relationshipName)

MtSTS MtCtx_GetRemovedSuccessors (MtContext ctx,
MtSize* numRemSuccessors,
MtOid* allRemSuccessors,
MtOid object,
MtOid relationship)
MtSTS MtCtxMGetAddedSuccessors (MtContext ctx,
MtSize* numAddedSuccessors,
MtOid** allAddedSuccessors,
MtOid object,
MtString relationshipName)
MtSTS MtCtx_MGetAddedSuccessors (MtContext ctx,
MtSize* numAddedSuccessors,
MtOid** allAddedSuccessors,
MtOid object,
MtOid relationship)

MtSTS MtCtxMGetRemovedSuccessors (MtContext ctx,
MtSize* numRemSuccessors,
MtOid** allRemSuccessors,
MtOid object,
MtString relationshipName)
MtSTS MtCtx MGetRemovedSuccessors (MtContext ctx,
MtSize* numRemSuccessors,
MtOid** allRemSuccessors,
MtOid object,
MtOid relationship)

Functions by Themes

1.4

Overview

Database Modification

The only objects that can be modified in the MT DATA MODIFICATION mode
are the database terminal instances. The schema (and therefore the meta-
schema) cannot be modified.

In MT DATA DEFINITION mode, the terminal instances, schema and the meta-
schema can be modified.

Modifications can be performed during a transaction only. When a stream is
opened, only the modifications that do not corrupt the stream are authorized. A
transaction ends with a commit or an abort. An abort may be implemented by
Matisse when a deadlock occurs.

Any modification can be divided into two steps:

1. Calling the modification function:

When object modification is attempted, a check occurs to determine if the
object is modifiable. Checks are made to determine if the property to be
modified is allowed for the object, if the object is updatable (schema objects
are not updatable in MT DATA MODIFICATION mode), if the object has
already been modified, or if the modifications will make it impossible to
carry out future checks.

A check is performed on the values that are stored. The values must
conform to the constraints of the database: Storing a number higher than
that specified, a type other than that specified, etc. is not permitted.

2. Committing the transaction:

Object consistency is checked only when the transaction is to be committed.
All modified objects and entry-points are then validated and written. The
transaction is then definitively committed, and the client cache is flushed.

When an object is validated, for each object property that has been modified,
Matisse checks the structural constraints (the value of the attribute Mt Type for
an attribute, the values of the attribute MtCardinality, and the relationship
MtSuccessors for a relationship, etc.).

If an error occurs while the transaction is being committed, the transaction is

not aborted. The user must either handle the error, abort it, or correct the data.
Matisse presents various functions to validate objects individually, before the
overall transaction commit.

There are three categories of modification:

@ Object creation
@ Object deletion
€ Object modification

20

Matisse C API Reference

Object
Validation

Multimedia
Streaming

Entry Points

Indexes

List of Functions

Object Creation

Object Deletion

Object Modification

Objects that are modified during a transaction are checked at the end of the
transaction only (i.e., when MtCommitTransaction is called).

When an object is validated, for each object property that has been modified,
Matisse checks the structural constraints (the attribute Mt Type for an attribute,
the attribute MtCardinality, and the relationship Mt Successors for a
relationship).

Large attributes of type list can be used to store multimedia data such as audio
or video. If you use the list interface to store a large attribute, the attribute will
be stored directly on the server without caching in the client cache and the
attribute will be stored outside of the embedding object. By default the large
attribute will not be fetched when you fetch the object. Instead, you can fetch it
through the streaming API. The functions MtSetListElements and

Mt SetListElements implement this interface.

When you modify the value of an attribute that has an entry-point function, the
make entry function is called twice. The function is first called with the
previous value to delete the previous entry point. The function is then called
with the new value to generate a new entry point for the attribute.

When you modify an object by changing the value of an attribute that
represents an index criterion, the index is updated.

In MT DATA DEFINITION mode, you may also want to create a new index for a
class which already has instances. The entries in the index for each instance of
the class are created at commit time. During the transaction, the index is not
scannable.

The index may be deleted in MT DATA DEFINITION mode. There is no other
restriction for deleting an index.

Within the same transaction, you may create several indexes. You may also
delete an index.

MtSTS MtCtxCreateObject (MtContext ctx, MtOid* object,
MtString className)

MtSTS MtCtx_CreateObject (MtContext ctx, MtOid* object,

MtOid class)

MtSTS MtCtxRemoveObject (MtContext ctx, MtOid object)

MtSTS MtCtxAddNumSuccessors (MtContext ctx, MtOid object,
MtString relationshipName,
MtSize numSuccessors,
MtOid* successors)

Functions by Themes

21

MtSTS MtCtx_AddNumSuccessors (MtContext ctx, MtOid object,
MtOid relationship,
MtSize numSuccessors,
MtOid* successors)

MtSTS MtCtxAddSuccessor (MtContext ctx, MtOid object,
MtString relationshipName,
MtOid successor,
MtWhere where, ...)

MtSTS MtCtx_AddSuccessor (MtContext ctx, MtOid object,
MtOid relationship,
MtOid successor,
MtWhere where, ...)
MtSTS MtCtxAddSuccessors (MtContext ctx, MtOid object,
MtString relationshipName,
MtSize numSuccessors, ...)
MtSTS MtCtx AddSuccessors (MtContext ctx, MtOid object,
MtOid relationship,
MtSize numSuccessors, ...)
MtSTS MtCtxRemoveAllSuccessors (MtContext ctx, MtOid
object,
MtString relationshipName)
MtSTS MtCtx_RemoveAllSuccessors (MtContext ctx, MtOid
object,
MtOid relationship)
MtSTS MtCtxRemoveNumSuccessors (MtContext ctx, MtOid
object,
MtString relationshipName,
MtSize numSuccessors,
MtOid* successors)
MtSTS MtCtx_RemoveNumSuccessors (MtContext ctx, MtOid
object,
MtOid relationship,
MtSize numSuccessors,
MtOid* successors)
MtSTS MtCtxRemoveSuccessors (MtContext ctx, MtOid object,
MtString relationshipName,
MtSize MtContext ctx,
numSuccessors, ...)
MtSTS MtCtx RemoveSuccessors (MtOid object,
MtOid relationship,
MtSize numSuccessors,
-)
MtSTS MtCtxRemoveValue (MtContext ctx, MtOid object,
MtString attributeName)
MtSTS MtCtx_ RemoveValue (MtContext ctx, MtOid object,
MtOid attribute)
MtSTS MtCtxSetListElements (MtContext ctx, MtOid object,
MtString attributeName,
MtType type,
void* buflist,

22

Matisse C API Reference

MtSize* numElts,
MtSize firstEltOffset,
MtBoolean discardAfter)
MtSTS MtCtx SetListElements (MtContext ctx, MtOid object,
MtOid attribute)
MtType type,
void* buflist,
MtSize* numElts,
MtSize firstEltOffset,
MtBoolean discardAfter)
MtSTS MtCtxSetValue (MtContext ctx, MtOid object,
MtString attributeName,
MtType type, void* value,
MtSize rank,
-)
MtSTS MtCtx_ SetValue (MtContext ctx, MtOid object,
MtOid attribute,
MtType type,
void* value, MtSize rank, ...)

Entry Points MtSTS <make entry function> (MtSize numArgs,
MtSize* oneMore,
MtString buf,
void** context,
MtType type,
void* value,
MtSize rank,
MtSize* dims)

1.5 Object Streaming

Overview The stream mechanism offers the capability of successively retrieving a set of
objects that share a common feature (e.g. they all point to the same entry-point
or they all belong to the same class). Object identifiers are transferred to the
server when an object is accessed through the stream while the objects
themselves are not transferred to the server unless a read operation is applied.

Using streams, you can scan:

@ all instances of a class and its subclasses by opening a classStream (using
a function such as ,MtCtxOpenIntancesStream,
MtCtxOpenOwnIntancesStream), and mapping the instances with the
MtCtxNextObject (s) function.

@ all objects pointed to by the same entry-point and depending on a specific
class and relationship, This is done by opening an EPStream (using a
function such as MtCtxOpenEntryPointStream) and mapping the objects
with the MtCtxNextObject (s) function.

Functions by Themes 23

List of Functions

€ an index from one entry to another. This is done by opening an
IndexStream (using a function such as MtCtxOpenIndexStream) and
mapping the objects with the MtCtxNextObject (s) function or mapping
both the entries and the objects with the MtCtxNext IndexEntry function.

@ all successors of an object specified by a relationship. This is done by
opening a RelStream (using a function such as
MtCtxOpenRelationsipsStream), and mapping the successors with the
MtCtxNextObject (s) functions.

@ all the predecessors of an object specified by a relationship. This is done by
opening an IRelStream (using a function such as
MtCtxOpenInverseRelationshipsStream) and mapping the successors
with the MtCtxNextObject (s) function

@ all the attributes of an object. This is done by opening an
ObjectAttStream (using a function such as
MtCtxOpenAttributesStream) and mapping the attributes with the
MtCtxNextProperty function. This function indicates whether or not a
value has been assigned for each object attribute.

@ all the relationships of an object. This is done by opening an
ObjectRelStream (using a function such as
MtCtxOpenReleationshipsStream), and mapping the relationships with
the MtCtxNextProperty function. This function specifies whether the
relationship has a value in the object.

@ all the inverse relationships present in an object. This is done by opening an
ObjIRelStream (using a function such as
MtCtxOpenInverseRelationshipsStream) and mapping the inverse
relationships with the MtCtxNextProperty function.

When a stream is opened, you can modify, create or delete the objects of the
stream. The stream will not immediately reflect these changes. Once all the
elements of the stream have been retrieved, the function will return the
MATISSE ENDOFSTREAM code. Use MtCtxCloseStream to close the stream.

MtSTS MtCtxCloseStream (MtContext ctx, MtStream stream)
MtSTS MtCtxNextObject (MtContext ctx, MtStream stream,
MtOid* object)
MtSTS MtCtxNextObjects (MtContext ctx, MtStream stream,
MtOid* objects,
MtSize* numObjects)
MtSTS MtCtxNextProperty (MtContext ctx, MtStream stream,
MtOid* property,
MtBoolean* specifiedP)
MtSTS MtCtxNextIndexEntry (MtContext ctx, MtStream stream,
void *values [],
MtOid *object)
MtSTS MtCtxOpenInstancesStream (MtContext ctx,
MtStream* classStream,

24

Matisse C API Reference

MtString className,
MtSize numInstPerBuffer)
MtSTS MtCtx_OpenInstancesStream (MtContext ctx,
MtStream* classStream,
MtOid class,
MtSize numInstPerBuffer)

MtSTS MtCtxOpenEntryPointStream (MtContext ctx,
MtStream* entryPointStream,
MtString entryPoint,
MtString dictName,
MtString className,
MtSize numInstPerBuffer)

MtSTS MtCtx OpenEntryPointStream (MtContext ctx,
MtStream* entryPointStream,
MtString entryPoint,
MtOid dictionary,
MtOid class,
MtSize numInstPerBuffer)
MtSTS MtCtxOpenIndexEntriesStream (MtContext ctx, MtStream
*stream,
MtString indexName,
MtString className,
MtDirection direction,
MtSize nbOfCriteria,
void *startValues [],
void *endValues,
MtSize nbEntriesPerCall)
MtSTS MtCtx_OpenIndexEntriesStream (MtContext ctx, MtStream
*stream,
MtOid index,
MtOid class,
MtDirection direction,
MtSize nbOfCriteria,
void *startValues [],
void *endValues,
MtSize nbEntriesPerCall)
MtSTS MtCtxOpenIndexObjectsStream (MtContext ctx, MtStream
*stream,
MtString indexName,
MtString className,
MtDirection direction,
MtSize nbOfCriteria,
void *startValues [],
void *endValues,
MtSize nbObjectsPerCall)
MtSTS MtCtx_OpenIndexObjectsStream (MtContext ctx, MtStream
*stream,
MtOid index,
MtOid class,
MtDirection direction,
MtSize nbOfCriteria,

Functions by Themes 25

void *startValues [],
void *endValues,
MtSize nbObjectsPerCall)
MtSTS MtCtxOpenPredecessorsStream (MtContext ctx,
MtStream* iRelStream,
MtOid object,
MtString relationshipName)
MtSTS MtCtx_QpenPredecessorsStream (MtContext ctx,
MtStream* iRelStream,
MtOid object,
MtOid relationship)
MtSTS MtCtxOpenAttributesStream (MtContext ctx,
MtStream* objectAttStream,
MtOid object)
MtSTS MtCtxOpenInverseRelationshipsStream MtContext ctx, (
MtStream* objectIRelStream,
MtOid object)
MtSTS MtCtxOpenRelationshipsStream (MtContext ctx,
MtStream* objectRelStream,
MtOid object)
MtSTS MtCtxOpenSuccessorsStream (MtContext ctx, MtStream*
relStream,
MtOid object,
MtString relationshipName)
MtSTS MtCtx_OpenSucessorsStream (MtContext ctx, MtStream*
relStream,
MtOid object,
MtOid relationship)

1.6 Class Description Access

You can obtain all the properties (including both attribute and relationship
descriptors) or all the superclasses defined for a specific class, using a function
such as MtGetSuccessors. If this function is used, however, the properties or
the superclasses that are obtained are those defined in the class without taking
the inheritance mechanism into account. If you want to obtain all the properties
or all the superclasses of the class (defined directly or inherited), you must use
one of the functions listed below.

Additionally, Matisse presents functions that provide information such as the
number of instances and the set of subclasses of a class.

List of Functions MtSTS MtCtxGetAllAttributes (MtContext ctx, MtSize*
numAttributes,
MtOid* attributes,
MtString className)
MtSTS MtCtx_GetAllAttributes (MtContext ctx, MtSize*
numAttributes,

26 Matisse C API Reference

MtOid* attributes,
MtOid class)

MtSTS MtCtxGetAllInverseRelationships (MtContext ctx,
MtSize* numIRelationships,
MtOid* iRelationships,
MtString className)
MtSTS MtCtx_GetAllInverseRelationships (MtContext ctx,
MtSize* numIRelationships,
MtOid* iRelationships,
MtOid class)
MtSTS MtCtxGetAllRelationships (MtContext ctx,
MtSize* numRelationships,
MtOid* relationships,
MtString className)
MtSTS MtCtx_ GetAllRelationships (MtContext ctx,
MtSize* numRelationships,
MtOid* relationships,
MtOid class)
MtSTS MtCtxGetAllSubclasses (MtContext ctx, MtSize*
numSubclasses,
MtOid* subClasses,
MtString className)
MtSTS MtCtx_GetAllSubclasses (MtSize* numSubclasses,
MtOid* subClasses,
MtOid class)
MtSTS MtCtxGetAllSuperclasses (MtContext ctx,
MtSize* numSuperclasses,
MtOid* superClasses,
MtString className)
MtSTS MtCtx_GetAllSuperclasses (MtContext ctx,
MtSize* numSuperclasses,
MtOid* superClasses,
MtOid class)
MtSTS MtCtxGetInstancesNumber (MtContext ctx,
MtSize* instancesNumber,
MtString className)
MtSTS MtCtx GetInstancesNumber (MtContext ctx,
MtSize* instancesNumber,
MtOid class)
MtSTS MtCtxMGetAllAttributes (MtContext ctx, MtSize*
numAttributes,
MtOid** attributes,
MtString className)
MtSTS MtCtx MGetAllAttributes (MtContext ctx, MtSize*
numAttributes,
MtOid** attributes,
MtOid class)
MtSTS MtCtxMGetAllInverseRelationships (MtContext ctx,
MtSize* numIRelationships,

Functions by Themes

27

MtOid** iRelationships,
MtString className)

MtSTS MtCtx MGetAllInverseRelationships (MtContext ctx,
MtSize* numIRelationships,
MtOid** iRelationships,
MtOid class)

MtSTS MtCtxMGetAllRelationships (MtContext ctx,
MtSize* numRelationships,
MtOid** relationships,
MtString className)

MtSTS MtCtx MGetAllRelationships (MtContext ctx,
MtSize* numRelationships,
MtOid** relationships,
MtOid class)
MtSTS MtCtxMGetAllSubclasses (MtContext ctx, MtSize*
numSubclasses,
MtOid** subClasses,
MtString className)

MESTS MtCtx_MGetAllSubclasses (MtContext ctx, MtSize*
numSubclasses,
MtOid** subClasses,
MtOid class)

MtSTS MtCtxMGetAllSuperclasses (MtContext ctx,
MtSize* numSuperclasses,
MtOid** superClasses,
MtString className)

MtSTS MtCtx MGetAllSuperclasses (MtContext ctx,
MtSize* numSuperclasses,
MtOid** superClasses,
MtOid class)

MtSTS MtCtxOpenInstancesStream (MtContext ctx,
MtStream* classStream,
MtString className,
MtSize numInstPerBuffer)

MtSTS MtCtx_OpenInstancesStream (MtContext ctx,
MtStream* classStream,
MtOid class,
MtSize numInstPerBuffer)

MtSTS MtCtxOpenOwnInstancesStream (MtContext ctx,
MtStream* classStream,
MtString className,
MtSize numInstPerBuffer)

MtSTS MtCtx_QpenOwnInstancesStream (MtContext ctx,
MtStream* classStream,
MtOid class,
MtSize numInstPerBuffer)

Matisse C API Reference

1.7 Embedded SQL

The functions discussed in this section execute SQL queries and retrieve
results. Please refer to the MATISSE SQOL Programmer s Guide for a description
of the MATISSE SQL syntax.

List of Functions MtSTS MtCtxSQLAllocStmt (MtContext ctx, MtSQLStmt* stmt)

MtSTS MtCtxSQLExecDirect
(MtContext ctx, MtSQLStmt stmt,
MtString stmtStr)

MtSTS MtCtxSQLFreeStmt (MtContext ctx, MtSQLStmt stmt)

MtSTS MtCtxSQLGetColumnInfo
(MtContext ctx, MtSQLStmt stmt,
MtSize colNum,

MtType* coltype,
MtString colname,
MtSize* sz)

MtSTS MtSCtxQLGetParamDimensions
(MtContext ctx, MtSQLStmt stmt,
MtSize paramNumber,

MtSize* rank,
MtSize dimensions)

MtSTS MtCtxSQLGetParamListElements
(MtContext ctx, MtSQLStmt stmt,
MtSize paramNumber,

MtType type,

void* buf,

MtSize* buf size,
MtSize firstEl1tOffset)

MtSTS MtCtxSQLGetParamValue
(MtContext ctx, MtSQLStmt stmt,
MtSize paramNumber,

MtType* type,
void* value,

MtSize* size)

MtSTS MtCtxSQLMGetParamValue
(MtContext ctx, MtSQLStmt stmt,
MtSize paramNumber,

MtType* type,
void** value,
MtSize* size)

MtSTS MtCtxSQLGetRowListElements
(MtContext ctx, MtStream stream,
MtSize colNum,

MtType colType,

Functions by Themes 29

void* bufList,
MtSize* numElts,
MtSize firstEltOffset)

MtSTS MtCtxSQLGetRowValue
(MtContext ctx, MtStream stream,
MtSize colNum,

MtType* colType,
void* value,
MtSize* size)

MtSTS MtCtxSQLMGetRowValue
(MtContext ctx, MtStream stream,
MtSize colNum,

MtType* colType,
void** value,
MtSize* size)

MtSTS MtCtxSQLGetStmtInfo
(MtContext ctx, MtSQLStmt stmt,
MtSQLStmtAttr stmtAttr,
void* value,

MtSize* size)

MtSTS MtCtxSQLGetStmtType
(MtContext ctx, MtSQLStmt stmt,
MtSQLStmtType* stmtType)

MtSTS MtCtxSQLNext
(MtContext ctx, MtStream stream)

MtSTS MtCtxSQLNumResultCols
(MtContext ctx, MtSQLStmt stmt,
MtSize* numcols)

MtSTS MtCtxSQLOpenStream
(MtContext ctx, MtStream* stream.

MtSQLStmt stmt)

1.8 Error Handling

Status Each Matisse function returns a status (type MtSTS). The status MUST be

Management tested whenever a Matisse function is called. The functions MtFailure and
MtSuccess test respectively, the failure or the success of the operation. The
functions MtCtxError and MtCtxPError provide additional information on
the error.

Programmers can generate their own errors using the function
MtCtxMakeUserError. They can, therefore, associate a specific value and a
string with the error code which is always MATISSE USERERROR.

30 Matisse C API Reference

Summary

List of Functions

Variable

€ Each Matisse function returns a status.

@ The programmer can generate custom errors.

int MtCtxCheckErrorP (MtContext ctx, MtSTS status)
char* MtCtxError (MtContext ctx)

int MtFailure (MtSTS status)

void* MtCtxGetUserError (MtContext ctx)

MtSTS MtCtxMakeUserError (MtContext ctx, void* error,
MtString errorString)

void MtCtxPError (MtContext ctx, MtString comment)
int MtSuccess (MtSTS status)

MtErrorStr

1.9 Miscellaneous

Dates and
Times

Numeric Types

Print Function

Locks

The C API contains several functions to handle date/time values.

The C API contains functions to handle fixed precision types with maximum
precision 19 and maximum scale 19. Default precision and scale is 19, 2.

The function MtCtxPrint prints an object, independent of its type.

Explicit locks let you have a more accurate control over the objects that are
manipulated. You can, for example, set a lock on several objects
simultaneously.

In addition, you can select a pessimistic strategy explicitly in some situations.

For pessimistic locking, write locks must be requested for any to-be-modified
object. When used, there is less risk that the transaction will aborted by
deadlocks. If a deadlock is detected during an explicit lock request, the request
fails but the transaction is not aborted.

If, however, the modified objects are related to other database objects, the
operations on inverse links may generate deadlocks.

Using explicit locks may handicap other users.

The Matisse programmer interface provides the option of setting explicit locks
on any object, except on the schema.

Functions by Themes

31

Save Time
Enumeration

Memory
Management

List of Functions

Dates and Times

The function MtCtxCommitTransaction lets you associate a string with the
logical time that results. You can use this string to identify the logical time that
you want to consult in a version access. A state that can be consulted is
indicated by a string. You can get the list of all the states that can be consulted
using the stream on these states (MtCtxOpenVersionStream,
MtCtxNextVersion and MtCtxCloseStream.

Within a transaction, the client cache can grow disproportionately if the user is
handling numerous objects.

Matisse offers the option of freeing objects from the client cache..

MtSTS

MtSTS

MtSTS

MtSTS

MtSTS

MtSTS

MtSTS

MtSTS

MtTimestampAdd (
MtTimestamp *result,
MtTimestamp *time,
MtInterval *interval)
MtTimestampBuild (
MtTimestamp *result,
MtString buffer,
MtTimeZone timezone)
MtTimestampCompare (

MtInteger *result,

MtTimestamp *timel,
MtTimestamp *time?2)

MtTimestampDiff (
MtInteval *result,

MtTimestamp *timel,
MtTimestamp *time?2)

MtTimestampGetCurrent (
MtTimestamp *currentTime)
MtTimestampPrint (
MtString buffer,
MtSize bufferSize,
MtString format,
MtTimestamp *time,
MtTimeZone timezone)
MtTimestampSubtract (
MtTimestamp *result,
MtTimestamp *time,
MtInterval *interval)
MtIntervalAdd (
MtInterval *result,
MtInterval *intervall,
MtInterval *intervall)

32

Matisse C API Reference

Numeric Types

MtSTS

MtSTS

MtSTS

MtSTS

MtSTS

MtSTS

MtSTS

MtSTS

MtSTS

MtSTS

MtSTS

MtSTS

MtIntervalBuild (
MtInterval

MtString b
MtIntervalCompare (
MtInteger
MtInterval
MtInterval
MtIntervalDivide (
MtInterval
MtInterval

*result,
uffer)

*result,
*intervall,
*interval?2)

*result,
*interval,

MtInteger n)
MtIntervalMultiply (

MtInterval *result,

MtInterval *interval,

MtInteger n)
MtIntervalPrint (

MtString buffer,

MtSize bufferSize,

MtString format,

MtInterval *interval)
MtIntervalSubtract (

MtInterval *result,

MtInterval *intervall,

MtInterval *intervall)

MtNumericAdd (
MtNumeric

MtNumeric
MtNumeric

MtNumericBuild (
MtNumeric

MtString s
MtInteger
MtInteger

MtNumericCompare (
MtInteger

MtNumeric
MtNumeric

MtNumericDivide (
MtNumeric

MtNumeric
MtNumeric

MtNumericFromDouble (

MtNumeric

*result,

*valuel,
*value?l)

*result,

tring,

precision,

scale)

*result,

*valuel,
*value?l)

*result,

*valuel,
*value?l)

*result,

MtDouble value)

MtNumericFromLong (
MtNumeric

MtLong val

*result,

ue)

Functions by Themes

33

Print Function

Locks

MtSTS MtNumericGetPrecision (

MtSize *precision,

MtString value)
MtSTS MtNumericGetScale (

MtSize *scale,

MtString value)
MtSTS MtNumericMultiply (

MtNumeric *result,

MtNumeric *valuel,

MtNumeric *valuel2)
MtSTS MtNumericPrint (

MtString buffer,

MtSize buffsz,

MtNumeric *value)
MtSTS MtNumericRound (

MtNumeric *result,

MtNumeric *value,

MtSize roundScale,

MtRounding roundingMethod)
MtSTS MtNumericSubtract (

MtNumeric *result,

MtNumeric *valuel,

MtNumeric *valueZl)
MtSTS MtNumericToDouble (

MtDouble *result,

MtNumeric *value)
MtSTS MtNumericToLong (

MtLong *result,
MtNumeric *value)

MtSTS MtCtxPrint (MtContext ctx, MtOid object, FILE*
stream)

MtSTS MtCtxLockNumObjects (MtContext ctx, MtSize
numObjects,
MtOid* objects,
MtLock* lIocks)
MtSTS MtCtxLockObjects (MtContext ctx, MtSize numObjects,
MtOid firstObject,
MtLock firstLock, ...)
MtSTS MtCtxLockObjectsFromEntryPoint (MtContext ctx, MtLock
lock,
MtString entryPoint,
MtString dictName,
MtString className)
MtSTS MtCtx LockObjectsFromEntryPoint (MtContext ctx,
MtLock Iock,

Matisse C API Reference

Save Times

Memory
Management

MtString entryPoint,
MtOid dictionary,
MtOid class)

MtSTS MtCtxNextVersion (MtContext ctx, MtStream
versionStream,
MtString buf,
MtSize bufSize)
MtSTS MCtxtOpenVersionStream (MtContext ctx,
MtStream* versionStream)

MtSTS MtCtxFreeNumObjects (MtContext ctx, MtSize
numObjects,
MtOid* Objects)
MtSTS MtCtxFreeObjects (MtContext ctx, MtSize numObjects,
)

Functions by Themes

35

2 Type Reference

2.1 Matisse Programming Types

MtBoolean

MtChar

MtConfigurationType

MtContext

MtDirection

MtDouble
MtFloat

MtIndexCriterialnfo

When you create a Matisse schema or write a database application, you should
only use recommended programming types to manage attribute values. Most
programming types correspond to the Matisse data types described in the
following section.

The recommended Matisse programming types can be used in your program
after including the matisseCtx.h file. These types are listed below:

This type is used to signal a condition that is TRUE or FALSE. There are two
values defined to be MtBoolean: MT TRUE and MT FALSE.

This type is used to manage a character.

This type is used to specify the information to be retrieved by the function
MtCtxGetConfigurationInfo. Only the following values are possible:

MT MAX BUFFERED OBJECTS
MT MAX INDEX CRITERIA NUMBER
MT MAX INDEX OID LENGTH

See GetConfigurationinfo, on page 74 for further information on this
programming type.

This is an opaque structure resulting from a connection and is used for the
functions MtCtxAllocateContext, MtCtxFreeContext,
MtCtxSetConnectionOption, MtCtxGetConnectionOption,

MtCtxConnectDatabase, MtCtxDisconnectDatabase.

MtDirection indicates the order in which an index is scanned when a stream
is opened on this type. There are only two possible values for this type,

MT DIRECT and MT REVERSE. MT DIRECT indicates that the index should be
scanned from the first entry to the last. MT REVERSE indicates that the index
should be scanned from the last entry to the first.

This type is used to manage double precision floating point numbers (64-bit).
This type is used to manage a floating point numbers (32-bit).

This type is used to store information retrieved by the functions
MtCtxMGetIndexInfo, MtCtx MGetIndexInfo, MtCtxGetIndexInfo,
and MtCtx GetIndexInfo.

MtIndexCriteriaInfo is a structure. It contains the following fields:

MtOid index0Oid - the object identifier of the index

36

Matisse C API Reference

MtOid

MtLock

MtLockWaitTime

MtOrdering

MtShort
Mtinteger
MtLong

MtServerExecution
Priority

MtSize

MtStream

MtString

MtSTS

MtSize nbOfCriteria - the number of criteria

criteria- an array dimensioned as the maximum number of criteria. Each
element of the array is also a structure describing a criterion:

B MtOid attributeOid - the object identifier of the criterion, which
may be an attribute
B MtType type - the type of the criterion

MtInteger size - the size of the criterion as described in the meta-
schema

B MtOrdering order - the ordering of the index for the criterion, as
described in the meta-schema.

This is a Matisse object identifier.

This is the type of lock set on a Matisse object or on an entry-point (MT READ
and MT WRITE).

This type is used to specify the wait-time for server access conflicts to be
resolved. Two constants are defined with special values:
MT_NO_WAIT: if the lock cannot immediately be granted, it is released
MT WAIT FOREVER: wait until there is a deadlock or until the lock is be
granted

This type indicates the direction that objects in an index are ordered
(MT ASCEND and MT DESCEND).

This type is used to manage a signed 16 bit integer.
This type is used to manage a signed 32-bit integer.
This type is used to manage a signed 64-bit integer.

This type specifies the user priority for access to the database. Two constants
are defined for specifying the legal range of values for this priority. These
constants are MT_MIN SERVER EXECUTION PRIORITY and

MT MAX SERVER EXECUTION PRIORITY. Any value between these two values
is valid.

This type is used by the functions MtGetDataBytesReceived and
MtGetDataBytesSent to define a size such as the number of elements in an
array or the size of an attribute or an object. MtSize is a 32-bit integer that
assures compatibility with applications built on earlier versions of Matisse.

This is the stream used to manipulate objects.

This type is used to manage a string (character array). It is defined as a pointer
to MtChar (i.e., typedef MtChar* MtString).

This status is returned by each Matisse function.

Type Reference

37

MtTimestamp

Mtinterval

MtTimestampType

MtTranPriority

MtType

MtWhere

This is a public structure used to handle dates and timestamps.
The fields are as follows:

MtShort year - in range 1 to 8163
MtShort month - inrange 1 to 12

MtShort day - in range 1 to 31
MtShort hour - in range 0 to 23
MtShort minute - in range 0 to 59
MtShort second - in range 0 to 59

MtInteger microsecs - in range 0 to 999999

This is a public structure used to handle intervals of dates or timestamps.
The fields are as follows:

MtShort sign - + or -

MtInteger days - in range 0 to 1491308
MtShort hours - in range 0 to 23
MtShort minutes - in range 0 to 59
MtShort seconds - in range 0 to 59

MtInteger microsecs - in range 0 to 999999

This is a timestamp type enumeration. This type is limited to
MT LOCAL TIMESTAMP and MT UNIVERSAL TIMESTAMP values.

This type is used to specify the user priority for access conflict resolution. Two
constants are defined to specify the legal range of values for transaction
priority. These constants are MT MIN TRAN PRIORITY, the minimum value for
transaction priority and MT MAX TRAN PRIORITY, the maximum value for
transaction priority.

This type contains a type of attribute value (enumeration of all types is
described in the next chapter).

This type is used to specify the location of a new successor. It can be specified
with the following values:

MT FIRST: The successor is added at the beginning of the existing list of
successors

MT_ APPEND: The successor is added at the end of the existing list of
successors

MT AFTER: The successor is added after the successor whose identifier is
specified by the where argument.

This data type is used by the Mt AddSuccessor and MtAddSuccessor
functions.

38

Matisse C API Reference

2.2

MT_BOOLEAN
MT_BOOLEAN_LIST
MT_CHAR
MT_DATE
MT_DATE_LIST
MT_DOUBLE
MT_DOUBLE_LIST
MT_FLOAT
MT_FLOAT LIST
MT_NULL
MT_SHORT
MT_SHORT LIST
MT_INTEGER
MT_INTEGER_LIST
MT_LONG
MT_LONG_LIST

MT_STRING,
MT_TEXT

MT_TIME_INTERVAL

MT_TIME_INTERVAL_LIST

MT_TIMESTAMP

Matisse Data Types

A Matisse attribute accepts the basic C language types. When you need to
assign a value to a Matisse attribute, one of a predefined set of datatypes must
be used.

To use this set, you must include the matisseCtx.h file.

Below is the list of all the data types that can be used to store an attribute value
in Matisse:

Boolean.

Vector of booleans.

Extended ASCII character (0 to 255).

Date (Year-Month-Day).

Vector of dates.

Double precision floating point (IEEE format).
Vector of double floating point values (IEEE format)
Single floating point (IEEE format).

Vector of single floating point values (IEEE format).
Represents “no value” (an empty list).

Signed integer stored on a maximum of 16 bits.
Vector of signed 16-bit integers.

Signed integer stored on a maximum of 32 bits.
Vector of signed 32-bit integers.

Signed integer stored on a maximum of 64 bits.
Vector of signed 64-bit integers.

String made up of extended ASCII characters.

Timestamp interval (days hours:minutes:seconds.microseconds).
Vector of timestamp intervals.

Timestamp
(Year-Month-Day Hour:Minute:seconds.microseconds).

Type Reference

39

MT_TIMESTAMP_LIST

MT_BYTE

MT_BYTES,
MT_AUDIO,
MT_VIDEO,
MT_IMAGE

MT_NUMERIC

MT_NUMERIC_LIST

Vector of timestamps.

Unsigned integer stored on a maximum of 8 bits.

Vector of unsigned 8-bit integers.

Fixed precision value with maximum precision 19 and maximum scale 19.
Default precision and scale is 19, 2.

Vector of fixed precision types.

2.3 Type Correspondences

All of the Matisse data types correspond to Matisse programming types. The
following table shows the Matisse programming types and the Matisse data
types to which they correspond.

Programming Type
MtBoolean
MtBoolean*
MtChar
MtDouble
MtDouble*
MtFloat
MtFloat*
MtInterval
MtInterval*
MtShort
MtShort*
MtInteger
MtInteger*
MtLong

MtLong*
MtString, MtChar*
MtString*
MtTimestamp
MtTimestamp*

MtByte

Matisse Data Type

MT BOOLEAN

MT BOOLEAN LIST

MT CHAR

MT DOUBLE

MT DOUBLE LIST

MT FLOAT

MT FLOAT LIST

MT INTERVAL

MT INTERVAL LIST

MT SHORT

MT SHORT LIST

MT INTEGER

MT INTEGER LIST

MT LONG

MT LONG_ LIST

MT STRING, MT TEXT

MT STRING LIST

MT DATE, MT TIMESTAMP
MT DATE LIST, MT TIMESTAMP LIST

MT BYTE

40

Matisse C API Reference

Programming Type Matisse Data Type

MtByte* MT BYTE ARRAY, MT BYTES, MT AUDIO,
MT VIDEO, MT IMAGE

MtNumeric MT NUMERIC

MtNumeric* MT NUMERIC LIST

A variable declared as Mt Type may be set to any of the Matisse data types
listed above.

All the array types may have up to eight dimensions.

Type Reference

41

3 Detailed API Reference

All of the C API functions begin with the prefix MtCtx. The first argument ctx
of all function starting with MtCtx is of type MtContex.

Functions taking an MtOid (an object id) append a *_’ to MtCtx prefix (i.e.,
MtCtx). Because C doesn’t support overloading, functions taking a string have
only the MtCtx prefix.

For the set of Matisse Get functions, there are often four variants that perform
almost identical operations with slightly different input or output arguments.
These functions have the prefixes MtCtxGet, MtCtx_ Get, MtCtxMGet, and
MtCtx MGet. The ‘M’ following MtCtx or MtCtx_, signifies that memory is
allocated by Matisse, whereas the functions without the ‘M’ require that the
programmer allocate memory before the function call.

For the set of Matisse functions that operate on several objects, there are often
four variants that perform almost identical operations with slightly different
input or output arguments. These functions have names which contain ‘Num’.
The ‘Num’ signifies that the function uses arrays instead of a variable number of
arguments represented by the ellipsis punctuator (“...”) in C language.

To use the functions described in the following text, you will need to include
the matisseCtx.h file in your program.

AbortTransaction
Syntax MtSTS MtCtxAbortTransaction (MtContext ctx)

Purpose This function aborts the current transaction without committing any
modifications.

Arguments This function takes no arguments.

Result MATISSE SUCCESS
MATISSE_CONNLOST
MATISSE INVALOP
MATISSE NOCURRENTCONNECTION
MATISSE NOTRANS
MATISSE TRANABORTED

Description When this function is called, the transaction is aborted and the client cache is
flushed.

See also CommitTransaction (p. 48)
StartTransaction (p. 168)

42 Matisse C API Reference

AddSuccessor

Syntax MtSTS MtCtxAddSuccessor
(MtContext ctx, MtOid object,
MtString relationshipName,
MtOid successor,

MtWhere where,
-)

MtSTS MtCtx AddSuccessor
(MtContext ctx, MtOid object,
MtOid relationship,

MtOid successor,
MtWhere where,
-)

Purpose This function adds a new successor to the relationship.

Arguments object INPUT
An object.
relationshipName INPUT
A relationship name (in the form of a string).
relationshipINPUT
A relationship object.
successorINPUT
The successor to be added.
where INPUT

The location where the new successor is to be added.
where can be specified with the following values:
MT FIRST (the successor is added at the beginning of the existing list of
SUCCeSsors)
MT_ APPEND (the successor is added at the end of the existing list of
successors)
MT_ AFTER (the successor is added after the successor that is specified
following the where argument).

Other INPUT arguments:

When the argument where is set to MT AFTER, it must be followed by
the successor after which the new successor is to be added.

Result MATISSE SUCCESS
MATISSE ALREADYSUCC
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE FROZENOBJECT
MATISSE INVALCLASSMODIF9
MATISSE INVALINDEXMODIF2
MATISSE INVALINDEXMODIF4
MATISSE INVALMODIF
MATISSE INVALOP
MATISSE INVALREL

Detailed API Reference 43

Description

MATISSE INVALSTRINGSIZE
MATISSE INVALSUPCLASS
MATISSE INVALWHERE

MATISSE METASCHEMAOBJECT
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHCLASSREL
MATISSE_NOSUCHFUNC

MATISSE NOSUCHREL

MATISSE NOSUCHSUCC

MATISSE NOTRANS

MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE_OVERRIDENVIOLATION
MATISSE RELEXPECTED
MATISSE_SFUNCERRORABORT
MATISSE TRANABORTED
MATISSE_USERERROR

MATISSE WAITTIME

The location of the new successor depends on the value of the argument where:
@ If whereis set to MT FIRST, the successor is added at the beginning of the

existing list of successors.

@ If whereis set to MT APPEND, the successor is added at the end of the
existing list of successors.

@ if whereis set to MT AFTER, the successor is added after the successor that
is specified following the where argument.

Matisse preserves the order of the successors in a relationship. Functions such
as MtCtxGetSuccessors retrieve the successors in the same order as they
were stored.

Only the successors of a relationship defined in the data schema can be
modified.

For each successor added to the relationship, the inverse relationship in the
successor is added.

Modifications are validated and saved on the server during

MtCtxCommitTransaction.
The name of relationships is not case sensitive.

These functions can be called only from within a transaction.

CAUTION: The objects of a database cannot reference those of another
database through a Matisse relationship. If this situation
occurs, Matisse generates an error.

Matisse C API Reference

See also AddSuccessors (p. 45)
GetAddedSuccessors (p. 58)

AddSuccessors

Syntax

MtSTS MtCtxAddNumSuccessors
(MtContext ctx, MtOid object,
MtString relationshipName,
MtSize numSuccessors,
MtOid* successors)
MESTS MtCtx AddNumSuccessors
(MtContext ctx, MtOid object, MtOid relationship,
MtSize numSuccessors,
MtOid* successors)
MtSTS MtCtxAddSuccessors
(MtContext ctx, MtOid object,
MtString relationshipName,
MtSize numSuccessors, ...)
MtSTS MtCtx AddSuccessors
(MtContext ctx, MtOid object, MtOid relationship,
MtSize numSuccessors, ...)

Purpose These functions add new successors to the relationship. The new successors
follow the successors already present in the object.

Arguments

Result

object INPUT

An object.
relationshipNameINPUT

A relationship name (a string).
relationshipINPUT

A relationship object.
numSuccessorsINPUT

The number of successors to be added.
successorsINPUT

The array of the successors to be added.
Other INPUT arguments:

The argument numSuccessors must be followed by the successors
(type Mt0id) to be added.

MATISSE SUCCESS
MATISSE ALREADYSUCC

MATISSE CONNLOST

MATISSE DEADLOCKABORT
MATISSE FROZENOBJECT
MATISSE INVALCLASSMODIF9
MATISSE INVALINDEXMODIF2
MATISSE INVALINDEXMODIF4

Detailed API Reference

45

Description

See also

MATISSE INVALMODIF

MATISSE INVALNB

MATISSE INVALOP

MATISSE INVALREL

MATISSE INVALSTRINGSIZE
MATISSE INVALSUPCLASS
MATISSE METASCHEMAOBJECT
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHCLASSREL
MATISSE NOSUCHFUNC

MATISSE NOSUCHREL

MATISSE NOTRANS

MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTEFOUND
MATISSE OVERRIDENVIOLATION
MATISSE RELEXPECTED
MATISSE SFUNCERRORABORT
MATISSE TRANABORTED
MATISSE UNEXPECTEDDUPLICATES
MATISSE USERERROR

MATISSE WAITTIME

Matisse preserves the order of the successors in a relationship. Functions such
as MtCtxGetSuccessors retrieve the successors in the same order as they
were stored.

Only the successors of a relationship defined in the data schema can be added.

For each successor added to the relationship, the inverse relationship in the
successor is added.

Modifications are validated and saved on the server during
MtCtxCommitTransaction.

The name of relationships is not case sensitive.

These functions can be called only from within a transaction.

CAUTION: The objects of a database cannot reference those of another
database through a Matisse relationship. Mtoid values
always refer to objects of the currently selected database
even when they have been retrieved during previous
transactions with another database.

AddSuccessor (p. 43)
GetAddedSuccessors (p. 58)

Matisse C API Reference

AllocateContext

Syntax MtSTS MtCtxAllocateContext
(MtContext* connection)

Purpose This function allocates a connection with default options.

Arguments connectionOUTPUT
The structure that will contain all the information about the database
connection.
Result MATISSE SUCCESS

MATISSE MEMORYFAULT

Description This function allocates a connection with default options. The options can be
changed or retrieved by using MtCtxSetConnectionOption and
MtCtxGetConnectionOption respectively.

The following sequence of actions must be implemented when accessing a
database:

allocate a connection structure
establish the connection to the database
set the connection as current
execute operations on the database
deselect the connection
close the connection
free the connection structure
See also ConnectDatabase (p. 50)
CurrentDate (p. 53)
DisconnectDatabase (p. 53)
FreeContext (p. 57)
GetConnectionOption (p. 74)

SetConnectionOption (p. 147)
SetlListElements (p. 149)

CloseStream
Syntax MtSTS MtCtxCloseStream (MtContext ctx, MtStream stream)
Purpose This function closes the stream that is pointed to by stream.

Arguments stream INPUT

Detailed API Reference

Result

Description

See also

An entry-point stream, a class stream, a relationship stream, an object
attribute stream, an object relationship stream, or an object inverse
relationship stream.

MATISSE_ SUCCESS
MATISSE INVALSTREAM

MATISSE INVALOP

MATISSE NOCURRENTCONNECTION
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER

MATISSE STREAMCLOSED

These functions can be called from within a transaction or during a version

OpenlinstancesStream (p. 132)

OpenEntryPointStream (p. 125)

OpenindexEntriesStream (p. 126)

OpenPredecessorsStream (p. 137)

OpenAttributesStream (p. 124)

OpenlinverseRelationshipsStream (p. 134)

OpenRelationshipsStream (p. 138)

OpenSuccessorsStream (p. 139)

CommitTransaction

Syntax

MtSTS MtCtxCommitTransaction

(MtContext ctx, MtString prefix,
MtString* versionName)

Purpose This function terminates a transaction by committing any modification.

Arguments

Moreover, it allows you to save an instance view of the database for future
accesses in version mode (refer to the function MtCtxStartVersionAccess).

prefix INPUT

If you want to maintain a version of the database (for a future access in
version mode), this argument must point to a string of no more than 20
characters. This string will facilitate the creation of a database version

identifier at the end of the transaction.

If you do not want to maintain the current version of the database, the
argument must be NULL.

versionNameOUTPUT

If prefix is not NULL, this argument receives the database version
identifier that is saved. It is made up of up to the first 20 characters
(maximum) of prefix followed by a hexadecimal number. This string
will reference the version in MtCtxStartVersionAccess. Note that
Matisse allocates memory for this string automatically then returns a
pointer to the allocated memory.

48

Matisse C API Reference

Result

Description

MATISSE_ SUCCESS
MATISSE CONNLOST

MATISSE DEADLOCKABORT
MATISSE INCOMPCRITERIANUMBER
MATISSE INCOMPCRITERIASIZE
MATISSE INVALARG

MATISSE INVALATTMODIF1
MATISSEiINVALATTMODIF2
MATISSE INVALATTMODIF4
MATISSE INVALATTMODIFS
MATISSE INVALATTREMOVE
MATISSE INVALATTTYPE
MATISSE INVALCARDINALITY
MATISSE INVALCLASSMODIF1
MATISSE INVALCLASSMODIF2
MATISSE INVALCLASSMODIF4
MATISSE INVALCLASSMODIF5
MATISSE INVALCLASSMODIF6
MATISSE INVALCLASSMODIF7
MATISSE INVALCLASSMODIF
MATISSE INVALCLASSMODIF11
MATISSE INVALCRITERIACLASS
MATISSE INVALCRITERIAORDER
MATISSE INVALCRITERIASIZE
MATISSE INVALCRITERION
MATISSE INVALNAMESIZE
MATISSE INVALOP

MATISSE INVALRELDELETE
MATISSE INVALRELMODIF1
MATISSE INVALRELMODIF2
MATISSE INVALRELMODIF3
MATISSE INVALRELMODIF4
MATISSE INVALRELMODIFS
MATISSE INVALRELREMOVE
MATISSE INVALSTRINGSIZE
MATISSE INVALSUCCESSOR
MATISSE INVALSUCCREMOVE
MATISSE INVALSUCCSNB
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHFUNC

MATISSE NOTRANS

MATISSE NULLPOINTER
MATISSE TRANABORTED
MATISSE USERERROR

MATISSE WAITTIME

MATISSE WRITEWAITTIME

When an object is validated, for each object property that has been modified,
Matisse checks the structural constraints (the attribute Mt Type for an attribute,
the attribute MtCardinality, and the relationship MtCtxSuccessors fora
relationship, etc.).

Detailed API Reference

49

See also

If an error occurs while the object is being committed, the variable
mtInvalidObject is set to the object that causes the error.

MATISSE WAITTIME occurs only if there is a read lock when the objects are
being checked. If write locks cannot be acquired while the objects are being
written, the MATISSE WRITEWAITTIME error occurs. No additional
modifications (i.e. create, update, or delete operations) are allowed even if the
transaction is not committed or aborted. All modification functions will return
MATISSE INVALOP until the end of the transaction (when either
MtCtxCommitTransaction or MtCtxAbortTransaction returns

MATISSE SUCCESS).

When the transaction is aborted, the client cache is flushed.
This function can be called only from within a transaction.

AbortTransaction (p. 42)
IntervalAdd (p. 102)
StartTransaction (p. 168)
StartVersionAccess (p. 169)

ConnectDatabase

Syntax

Purpose

Arguments

MtSTS MtCtxConnectDatabase
(MtContext connection,
MtString host,

MtString databaseName,
MtString userName,
MtString password)

This function opens a database connection.

connectionOUTPUT
A previously allocated structure that will contain all the information on
the database connection.

host INPUT
The location of the database host.

databaseNameINPUT
The name of the database to connect to.

userNameINPUT
The name of the database user which may be set to NULL. If this is the
case, the login name of the user is used.

passwordINPUT

The user password. Can be set to NULL only if the user name is also
NULL.

50

Matisse C API Reference

Result

Description

Example

MATISSE_ SUCCESS
MATISSE INVALCONNECTION
MATISSE OPDENIED
MATISSE INVALUSERNAMELEN
MATISSE INVALPASSWDLEND
MATISSE INVALPASSWD
MATISSE CONNECTREJECT
MATISSE CONNLOST
MATISSE CONNTIMEOUT
MATISSE DBNAMETOOLONG
MATISSE DBNOTINIT
MATISSE INCOMPVERSION
MATISSE INVALOP

MATISSE INVTRANSPORT
MATISSE NOFREETOKEN
MATISSE_NOPMADDR
MATISSE NOSUCHDB
MATISSE NOSUCHHOST
MATISSE PMCONFAILED
MATISSE STREAMCLOSED
MATISSE TRANSDISABLED

The following sequence of actions must occur when accessing a database:

allocate a connection structure

establish the connection to the database

set the connection as current

execute operations on the database

deselect the connection

close the connection

free the connection structure
.As previously stated, a single client application may provide access to several
databases. In this case the user will open one connection per database.

Connections to several different databases can be opened simultaneously.

Once the database is selected, the client has direct access to the data, either
from within a transaction or within version access.

MtContext connection;
MtCtxAllocateContext (&connection) ;
MtCtxConnectDatabase
(&connection, "myhost", "mydb",
NULL, NULL) ;

This example shows a connection to the database called "mydb™" on the
machine "myhost". The database user name is set to the value of the current
login name (due to the two NULL parameters).

Detailed API Reference

51

CreateObject

See also AllocateContext (p. 47)

Syntax

Purpose

Arguments

Result

DisconnectDatabase (p. 53)

FreeContext (p. 57)

SetConnectionOption (p. 147)

MtSTS MtCtxCreateNumObjects
(MtContext ctx, MtSize numObjects, MtOid* objects,
MtString className)
MESTS MtCtx CreateNumObjects
(MtContext ctx, MtSize numObjects, MtOid* objects,
MtOid class)
MtSTS MtCtxCreateObject
(MtContext ctx, MtOid* object, MtString className)
MESTS MtCtx CreateObject
(MtContext ctx, MtOid* object, MtOid class)

These functions create one or more Matisse objects of the class className (or
class, depending on the function being used).

numObjectsINPUT

The number of objects to create.
objectsOUTPUT

Table of objects allocated by the user.
object OUTPUT

The created object.
classNameINPUT

A class name.
class INPUT

A class identifier.

MATISSE SUCCESS

MATISSE CLASSEXPECTED
MATISSE CONNLOST
MATISSE EXCEEDSLIMIT
MATISSE DEADLOCKABORT
MATISSE INVALCREATION
MATISSE INVALMODIF
MATISSE INVALNB

MATISSE INVALOP

MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHCLASS
MATISSE NOTRANS

MATISSE NULLPOINTER
MATISSE OBJECTDELETED

52

Matisse C API Reference

Description

CurrentDate
Syntax

Purpose

Arguments

Result

See also

MATISSE OBJECTNOTEFOUND
MATISSE SFUNCERRORABORT
MATISSE TRANABORTED
MATISSE USERERROR
MATISSE WAITTIME

The value of the numObjects argument must not exceed the limit specified by
the function MtCtxGetConfigurationInfo applied to the argument
MT MAX BUFFERED OBJECTS.

The name of the class is not case sensitive.

These functions can be called only from within a transaction.

MtTimestamp MtCurrentDate ()
This functions returns the current date.
None.

An MtTimestamp structure with the hour, minute, second and microsecs
fields set to 0.

DisconnectDatabase (p. 53)

DisconnectDatabase

Syntax

Purpose

Arguments

Result

MtSTS MtCtxDisconnectDatabase (MtContext connection)

This function closes the connection. Any data read from the database is flushed
from the client cache.

connectionINPUT
The structure that contains information specific to the database
(previously initialized using the function MtCtxConnectDatabase).

MATISSE SUCCESS
MATISSE INVALCONNECTIONSTATE
MATISSE INVALCONNECTION
MATISSE INVALOP

MATISSE NOCURRENTCONNECTION

The following sequence of actions must be implemented when accessing a
database:

allocate a connection structure

Detailed API Reference

53

establish the connection to the database
set the connection as current

execute some operations on the database
deselect the connection

close the connection

free the connection structure

See also AllocateContext (p. 47)
ConnectDatabase (p. 50)
FreeContext (p. 57)

EndVersionAccess
Syntax MtSTS MtCtxEndVersionAccess (MtContext ctx)

Purpose This function ends a version mode access on the database. Once the version
mode access is terminated, you can start another version access or a transaction
access.

Result MATISSE SUCCESS
MATISSE INVALOP
MATISSE NOCURRENTCONNECTION
MATISSE NOVERSIONACCESS

See also StartVersionAccess (p. 169)

Error
Syntax MtString MtCtxError (MtContext ctx)
Purpose This function returns the string associated with the latest Matisse error.
Result None.
See also MakeUserError (p. 111)
EventNotify

Syntax MtSTS MtCtxEventNotify (MtContext ctx, MtEvent event)

Purpose This function triggers an event.

54 Matisse C API Reference

Arguments

eventINPUT
The event to be triggered.

Result MATISSE SUCCESS
See also EventWait (p. 55), EventSubsribe (p. 55)
EventSubsribe
Syntax MtSTS MtCtxEventSubscribe (MtContext ctx, MtEvent
postedEvents)

Purpose This function subscribes to a list of events. Once the subscription is done, all
the events that occurred are logged for this subscriber. You are notified that an
event occurs by using the MtEventWait function.

Arguments postedEventsINPUT
A list of events (MT EVENT1 | MT EVENTS).
Result MATISSE SUCCESS
MATISSE EVENTSUBSCRIBEFAIL
See also EventUnsubscribe (p. 55)
EventUnsubscribe
Syntax MtSTS MtCtxEventUnsubscribe (MtContext ctx)
Purpose This function un-subscribes all events that you have subscribed to.
Arguments
Result MATISSE SUCCESS
MATISSE NOEVENTACTIVE
See also EventSubsribe (p. 55)
EventWait
Syntax MtSTS MtCtxEventWait
(MtContext ctx, MtLockWaitTime timeout, MtEvent
*triggeredEvents)
Purpose This functions remove objects from the client cache and reclaim memory space.

Detailed API Reference

55

Arguments timeoutINPUT
A wait-time in milli-seconds or MTWAIT FOREVER.
triggeredEventsOQUTPUT
The triggered events.

Result MATISSE SUCCESS
MATISSE NOEVENTACTIVE

MATISSE TIMEOUT

See also EventNotify (p. 54)

Failure
Syntax int MtFailure (MtSTS status)
Purpose This macro indicates whether a Matisse function has completed successfully.

Arguments status INPUT
The status returned by a Matisse function.

Result 0 if the status corresponds to a success; a nonnull integer otherwise.

See also Success (p. 170)

Free
Syntax MtSTS MtMFree (void* value)
Purpose This function frees the memory allocated by the functions MtMGet Xxx and
Mt MGetXXX.
Arguments value INPUT

A value allocated by one of the following functions: MtMGet XXX or
Mt MGetXXX.

Result MATISSE SUCCESS

Description When a program calls one of the Matisse functions beginning with the letters
Mt MGet or MtMGet, Matisse allocates memory to store the value. When the
value is no longer needed, the program must free the value using the MtMFree
function.

56 Matisse C API Reference

FreeContext

Syntax MtSTS MtCtxFreeContext
(MtContext connection)

Purpose This function frees a previously allocated connection structure.

Arguments connectionOUTPUT

A connection structure previously allocated by
MtCtxAllocateContext.

Result MATISSE SUCCESS
MATISSE INVALCONNECTION
MATISSE INVALOP
MATISSE INVALCONNECTIONSTATE

Description This function frees the connection structure previously allocated by
MtCtxAllocateContext. This function cannot be called if a database
connection is currently opened.

The following sequence of actions must be implemented when accessing a
database:

allocate a connection structure
establish the connection to the database
set the connection as current
execute the required operations on the database
deselect the connection
close the connection
free the connection structure
See also AllocateContext (p. 47)

ConnectDatabase (p. 50)

CurrentDate (p. 53)

DisconnectDatabase (p. 53)

GetConnectionOption (p. 74)

SetConnectionOption (p. 147)
SetlListElements (p. 149)

FreeObjects

Syntax MtSTS MtCtxFreeNumObjects
(MtContext ctx, MtSize numObjects, MtOid* objects)
MtSTS MtCtxFreeObjects
(MtContext ctx, MtSize numObjects, ...)

Detailed API Reference

57

Purpose These functions remove objects from the client cache and reclaim memory
space.

Arguments numObjectsINPUT

The number of objects to be freed.

objectsINPUT
An array that contains the objects to be freed. The programmer is
responsible for the memory space associated with the array.

Other INPUT arguments:
For MtCtxFreeObjects, the argument numobjects is followed by the
objects to be freed. The object identifiers should be of type Mtoid*.

Result MATISSE SUCCESS
MATISSE INVALNB
MATISSE NOCURRENTCONNECTION
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE UNLOADABLEOBJECT

Description As the objects are loaded in cache, the local objects table enlarges and the
available memory space decreases. The objects are freed from the objects table
at the end of the transaction only. Depending on user’s needs, however, it may
prove useful to free objects that are no longer used during the transaction to
make room for other objects.

Schema objects or objects that have been modified during the transaction
cannot be removed from the cache.

If an object specified as an argument is not loaded or does not exist, no error is
generated.

Freeing objects is an atomic operation: if MATISSE SUCCESS is returned, all the
objects have been freed. If an error is returned, no objects have been freed.

MtCtxFreeNumObjects can be called from within a transaction or during a
version access.

GetAddedSuccessors

Syntax MtSTS MtCtxGetAddedSuccessors
(MtContext ctx, MtSize* numAddedSuccessors,
MtOid* allAddedSuccessors,
MtOid object,
MtString relationshipName)
MtSTS MtCtx GetAddedSuccessors
(MtContext ctx, MtSize* numAddedSuccessors,
MtOid* allAddedSuccessors,
MtOid object, MtOid relationship)

58 Matisse C API Reference

Purpose

Arguments

Result

MtSTS MtCtxMGetAddedSuccessors
(MtContext ctx, MtSize* numAddedSuccessors,
MtOid** allAddedSuccessors,
MtOid object,
MtString relationshipName)
MtSTS MtCtx MGetAddedSuccessors
(MtContext ctx, MtSize* numAddedSuccessors,
MtOid** allAddedSuccessors,
MtOid object, MtOid relationship)

These functions act through a relationship to retrieve the successors of an
object that have been added during the current transaction.

numAddedSuccessorsINPUT/OUTPUT
In input, this parameter determines the size of the array specified by the
user. This parameter can be used as an input argument only by those
functions that do not allocate memory for the array of objects (i.e.
MtCthetAddedSuccessorsandMtCtx_GetAddedSuccessorsL
In output, this parameter gives the number of successors that have been
added during the transaction.

allAddedSuccessorsOUTPUT/INPUT
For the functions MtCtxGetAddedSuccessors and
MtCtx_GetAddedSuccessors which do not allocate memory, this
argument is an array allocated in the calling program. After the function
is called, this array will contain the successors of object added during
the current transaction through the relationship specified by
RelationshipName Or relationship.
For the functions MtCtxMGetAddedSuccessors and
MtCtx MGetAddedSuccessors, which allocate memory, this argument
is a pointer to an array allocated by Matisse. For these functions, the
program must declare a pointer to Mt0Oid. After declaring this pointer,
the program must pass the address of this pointer as the argument to the
function. In output, this pointer contains the address of the buffer that
lists the successors of object added during the current transaction.
allAddedSuccessors can be set to NULL, in which case the function
simply returns the number of successors added during the current
transaction.

object INPUT
An object.

relationshipNameINPUT
A relationship name.

relationship INPUT
The object relationship.

MATISSE SUCCESS

MATISSE ARRAYTOOSMALL
MATISSE CONNLOST
MATISSE DEADLOCKABORT

Detailed API Reference

59

MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHCLASSREL
MATISSE NOSUCHREL

MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTEFOUND
MATISSE RELEXPECTED

MATISSE WAITTIME

Description The names of relationships are not case sensitive. These functions can be called
either from within a transaction or during a version access. During version
access, however, these functions are not useful since they deal with the addition
of successors inside the current transaction and always return
numAddedSuccessors with a value of 0.

The functions MtCtxGetAddedSuccessors and
MtCtx_ GetAddedSuccessors do not allocate an array to store the object
successors added during the current transaction through a relationship. The
calling program can allocate an array of type MtOid and then pass this array as
the allAddedSuccessors argument.
The functions MtCtxMGetAddedSuccessors and
MtCtx MGetAddedSuccessors allocate an array to store all the identifiers
found. When calling these functions, a program must pass as the
allAddedSuccessors argument, the address of a pointer to MtOid. In output,
this argument will point to an array that contains the objects. To free the
memory space allocated for the array, the program can call the standard C
function: free.
See also AddSuccessor (p. 43)
AddSuccessors (p. 45)
GetAllAttributes
Syntax MtSTS MtCtxGetAllAttributes

(MtContext ctx, MtSize* numAttributes,
MtOid* attributes,
MtString className)

MtSTS MtCtx GetAllAttributes
(MtContext ctx, MtSize* numAttributes,
MtOid* attributes,
MtOid class)

MtSTS MtCtxMGetAllAttributes
(MtContext ctx, MtSize* numAttributes,
MtOid** attributes,
MtString className)

60

Matisse C API Reference

Purpose

Arguments

Result

MESTS MtCtx MGetAllAttributes
(MtContext ctx, MtSize* numAttributes,
MtOid** attributes,
MtOid class)

These functions retrieve all the attributes of the class including those attributes
defined in the superclasses of the class.

numAttributesINPUT/OUTPUT
In input, this parameter contains the size of the array (specified by the
user). This parameter can be used as an input argument only by those
functions that do not allocate memory for the array of objects (i.e.
MtCtxGetAllAttributes and MtCtx GetAllAttributes.)

In output, this parameter contains the number of attributes returned by
the function.

attributesOUTPUT/INPUT
For the functions MtCtxGetAllAttributes and
MtCtx GetAllAttributes which do not allocate memory, this
argument is an array allocated in the calling program. After the function
is called, this array will contain the attributes of the class and its
superclasses.
For the functions MtCtxMGetAllAttributes and
MtCtx MGetAttributes which allocate memory, this argument is a
pointer to a buffer allocated by Matisse. The calling program must
declare a pointer to MtOid. After declaring this pointer, the program
must pass the address of this pointer as the argument to the function. In
output, this pointer contains the address of the buffer that lists the
attributes of class and its superclasses recursively.

This parameter can be set to NULL, in which case the function returns the
number of attributes of class and its superclasses.
classNameINPUT
A class name.
class INPUT
A class object.

MATISSE SUCCESS
MATISSE ARRAYTOOSMALL
MATISSE CLASSEXPECTED
MATISSE CONNLOST

MATISSE DEADLOCKABORT
MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHCLASS

MATISSE NOTRANORVERSION
MATISSE NULLPOINTER

MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE TRANABORTED

MATISSE WAITTIME

Detailed API Reference

61

Description The names of classes are not case sensitive. These functions can be called
either from within a transaction or during a version access.

The functions MtCtxGetAllAttributes and MtCtx GetAllAttributes
do not allocate an array to store the attributes. The calling program must
allocate an array of type MtOid and then pass this array as theattributes
argument.

The functions MtCtxMGetAllAttributes and MtCtx MGetAllAttributes
allocate an array to store all the identifiers that are found. When calling these
functions, a program must pass as the attributes argument the address of a
pointer to MtOid. In output, this argument will point to an array that contains
the object identifiers. To free the memory space allocated for the array, the
program can call the standard C function: free.

See also OpenAttributesStream (p. 124)

GetAllInverseRelationships

Syntax MtSTS MtCtxGetAllInverseRelationships
(MtContext ctx, MtSize* numIRelationships,
MtOid* iRelationships,

MtString className)

MtSTS MtCtx GetAllInverseRelationships
(MtContext ctx, MtSize* numIRelationships,
MtOid* iRelationships,

MtOid class)

MtSTS MtCtxMGetAllInverseRelationships
(MtContext ctx, MtSize* numIRelationships,
MtOid** iRelationships,

MtString className)

MESTS MtCtx MGetAllInverseRelationships
(MtContext ctx, MtSize* numIRelationships,
MtOid** iRelationships,

MtOid class)

Purpose These functions retrieve all the possible inverse relationships of the class
specified by class and its subclasses.

Arguments numIRelationshipsINPUT/OUTPUT
In input, this parameter contains the size of the array specified by the
user. This parameter can be used as an input argument only by those
functions that do not allocate memory for the array of identifiers (i.e.
MtCtxGetAllInverseRelationships and
MtCtx GetAllInverseRelationships.
In output, this parameter contains the number of inverse relationships
that have been retrieved by the functions.

iRelationshipsOUTPUT/INPUT

62 Matisse C API Reference

Result

Description

For the functions MtCtxGetAllInverseRelationships and

MtCtx GetAllInverseRelationships which do not allocate
memory, this argument is an array allocated in the calling program.
After the function is called, this array will contain the possible inverse
relationships of class and of any subclass of class.

For the functions MtCtxMGetAllInverseRelationships and

MtCtx MGetAllInverseRelationships which allocate memory, this
argument is a pointer to an array allocated by Matisse. The program
must allocate a pointer to MtOid. After declaring this pointer, the
program must pass the address of this pointer as the argument to these
functions. In output, this pointer contains the address of the array that
lists the possible inverse relationships of class and of any subclass of

class.
This parameter can be set to NULL, in which case the function simply
returns the number of possible inverse relationships of class and its
subclasses.

classNameINPUT
A class name.

class INPUT
A class object.

MATISSE SUCCESS

MATISSE ARRAYTOOSMALL
MATISSE CLASSEXPECTED
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHCLASS
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE TRANABORTED
MATISSE WAITTIME

Note that when a class has a possible inverse relationship:

The relationship is not defined for the class.

The relationship has an inverse relationship for which the class is a possible
successor.

Every relationship also has an inverse relationship. For each relationship, you
must define a value for the relationship MtCtxInverseRelationship. The
value assigned to the MtCtxInverseRelationship is the relationship’s

inverse relationship.

Detailed API Reference

63

Example

Suppose in a schema the following two classes are defined:

MtClass
MtName / "Author"
MtAttributes-> Last Name/
MtRelationships->

MtClass
MtName/ "Book"
MtAttributes-> Title/

MtRelationships-> Written By->

Note that class Book defines a relationship Written By. This relationship, in
turn, defines an inverse relationship.

The following diagram illustrates the definitions of the relationship Written
By and its inverse relationship, Selected Works:

MtRelationship

MtName/ "Selected Works"
MtSuccessors-> [Book]
MtInverseRelationship->

= "

MtRelationship

MtName/ "Written By"
MtSuccessors—-> [Author]

MtInverseRelationship->

Consider that one instance of Author and one instance of Book are created, and
that for the instance of Book, the value of written By is assigned to the
instance of Author.

64

Matisse C API Reference

Listing Possible
Inverse
Relationships

See also

The following diagram illustrates the resulting link established between an
instance of class Book and an instance of class Author through the relationship
Written By:

Book
Title/ "Othello"
Written By-> ®

Person

Last Name/ "Shakespeare"

Selected Works->

For the instance Othello, the relationship Written By is assigned to the
instance Shakespeare.

As you can see, the inverse relationship Selected Works is also implied for
the instance of Shakespeare.

A stream opened by the function MtCtxOpenInverseRelationshipsStream
retrieves only those inverse relationships that exist for an object. An object
inverse relationship stream opened on the instance Irving, for example, will
retrieve the inverse relationship Selected Works.

It can sometimes prove useful to determine all of the inverse relationships that
instances of a particular class can have. You can retrieve this information with
the GetAllInverseRelationships functions. These functions return a list of
all the possible inverse relationships of a class.

The name of classes is not case sensitive. These functions can be called either
from within a transaction or during a version access.

The MtCtxGetAllInverseRelationships and
MtCtx_GetAllInverseRelationships functions do not allocate an array to
store the possible inverse relationships of class. The calling program must
allocate an array of type MtOid, then pass the address of this array as its
iRelationships argument.

The MtCtxMGetAllInverseRelationships and

MtCtx MGetAllInverseRelationships functions allocate an array to store
all the possible inverse relationships that are found. When calling these
functions, a program must pass as its iRelationships argument the address
of a pointer to Mt0oid. In output, this argument will point to an array that
contains the object identifiers. To free the memory space allocated for the array,
the program must call the free standard C function.

OpenlinverseRelationshipsStream (p. 134)

Detailed API Reference

65

GetAllRelationships

Syntax MtSTS MtCtxGetAllRelationships
(MtSize* numRelationships,
MtOid* relationships,
MtString className)

MtSTS MtCtx GetAllRelationships
(MtSize* numRelationships,
MtOid* relationships,

MtOid class)

MtSTS MtCtxMGetAllRelationships
(MtSize* numRelationships,
MtOid** relationships,
MtString className)

MESTS MtCtx MGetAllRelationships
(MtSize* numRelationships,
MtOid** relationships,

MtOid class)

Purpose These functions return all the relationships defined in the class and its
superclasses.

Arguments numRelationshipsINPUT/OUTPUT
In input, this argument contains the size of the array specified by the
user. This parameter can be used as an input argument only by those
functions that do not allocate memory for the array (i.e.
MtCtxGetAllInverseRelationships and
MtCtx GetAllInverseRelationships.)

In output, this argument contains the number of relationships of the
class and its superclasses.

relationshipsOUTPUT/INPUT
For the functions MtCtxGetAllRelationships and
MtCtx_GetAllRelationships which do not allocate memory, this
argument is an array allocated in the calling program. After the function
is called, this array will contain the relationships of className or
class and the relationships of any superclass of className or class
recursively.
For the functions MtCtxMGetAllRelationships and
MtCtx MGetAllRelationships which allocate memory, this argument
is a pointer to an array allocated by Matisse. The program must declare
a pointer to MtOid. After declaring this pointer, the program must pass
the address of this pointer as the argument to these functions. In output,
this pointer contains the address of the array that lists the relationships
of class or className and of any superclass of class or

className.

This parameter can be set to NULL, in which case, the function simply
returns the number of relationships of class and its superclasses.

66 Matisse C API Reference

classNameINPUT
A class name.
class INPUT

A class object.

Result MATISSE SUCCESS
MATISSE ARRAYTOOSMALL
MATISSE CLASSEXPECTED
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHCLASS
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE TRANABORTED
MATISSE WAITTIME

Description The names of the classes are not case sensitive. These functions can be called
either from within a transaction or during a version access.

The functions MtCtxGetAllRelationships and

MtCtx GetAllRelationships do not allocate an array to store the
relationships. The calling program must allocate an array of type MtOid, then
pass this array as its relationships argument.

The functions MtCtxMGetAllRelationships and

MtCtx MGetAllRelationships allocate an array to store the identifiers of all
the relationships found. When calling these functions, a program must pass as
its relationships argument the address of a pointer to MtOid. In output, this
argument will point to an array that contains the relationships. To free the
memory space allocated for the array, the program must call the standard C
function: free.

See also OpenRelationshipsStream (p. 138)

GetAllSubclasses

Syntax MtSTS MtCtxGetAllSubclasses

(MtContext ctx, MtSize* numSubclasses,
MtOid* subclasses,

MtString className)

MtSTS MtCtx GetAllSubclasses

(MtContext ctx, MtSize* numSubclasses,
MtOid* subclasses,

MtOid class)

Detailed API Reference 67

Purpose

Arguments

Result

MtSTS MtCtxMGetAllSubclasses

(MtContext ctx, MtSize* numSubclasses,
MtOid** subclasses,

MtString className)

MtSTS MtCtx MGetAllSubclasses

(MtContext ctx, MtSize* numSubclasses,
MtOid** subclasses,
MtOid class)

These functions retrieve the subclasses of class (those defined in the class and
in its subclasses).

numSubclassesINPUT/OUTPUT

In input, this parameter contains the size of the array specified by the
user. This parameter can be used as an input argument only by those
functions that do not allocate memory for the array of identifiers (i.e
MtCtxGetAllSubclasses and MtCtx_GetAllSubclasses).

In output, this parameter contains the number of subclasses returned by
the function.

subclassesOUTPUT/INPUT

For the functions MtCtxGetAllSubclasses and
MtCtx_GetAllSubclasses which do not allocate memory, this
argument is an array declared in the calling program. After the function
is called, this array will contain the subclasses of class or className
and their subclasses recursively.

For the functions MtCtxMGetAllSubclasses and

MtCtx MGetAllSubclasses which allocate memory, this argument is
a pointer to an array allocated by Matisse. The program must declare a
pointer to an MtOid. After declaring this pointer, the program must pass
the address of this pointer as the argument to the function. In output, this
pointer contains the address of the buffer that lists the subclasses of
class and their subclasses recursively.

This parameter can be set to NULL, in which case the function returns the
number of subclasses of class and its subclasses.

classNameINPUT
A class name.
class INPUT

A class identifier.

MATISSE SUCCESS
MATISSE ARRAYTOOSMALL

MATISSE CLASSEXPECTED

MATISSE CONNLOST

MATISSE DEADLOCKABORT

MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHCLASS

MATISSE NOTRANORVERSION
MATISSE NULLPOINTER

68

Matisse C API Reference

MATISSE OBJECTDELETED
MATISSE OBJECTNOTEFOUND
MATISSE TRANABORTED
MATISSE WAITTIME

Description The name of the class is not case sensitive. These functions can be called either
from within a transaction or during a version access.

The functions MtCtxGetAllSubclasses and MtCtx GetAllSubclasses
do not allocate an array to store the subclasses of class. The calling program
can allocate an array of type MtOid and pass the address of this array as its
subclasses argument.

The functions MtCtxMGetAllSubclasses and MtCtx MGetAllSubclasses
allocate an array to store all the objects found. When calling these functions, a
program must pass as its subclasses argument, the address of a pointer to an
Mtoid. In output, this argument will point to an array that contains the
subclasses. To free the memory space allocated for the array, the program can
call the standard C function: free.

GetAllSuperclasses

Syntax MtSTS MtCtxGetAllSuperclasses

(MtContext ctx, MtSize* numSuperclasses,
MtOid* superclasses,
MtString className)

MtSTS MtCtx GetAllSuperclasses
(MtContext ctx, MtSize* numSuperclasses,
MtOid* superclasses,
MtOid class)

MtSTS MtCtxMGetAllSuperclasses
(MtContext ctx, MtSize* numSuperclasses,
MtOid** superclasses,
MtString className)

MtSTS MtCtx MGetAllSuperclasses
(MtContext ctx, MtSize* numSuperclasses,
MtOid** superclasses,
MtOid class)

Purpose These functions retrieve the superclasses of c1ass—both those defined in the
class and those defined in the superclasses of class.

Arguments numSuperclassesINPUT/OUTPUT

In input, this parameter contains the size of the array specified by the
user. This parameter can be used as an input argument only by those
functions that do not allocate memory for the array of identifiers (i.e.
MtCtxGetAllSuperclasses and MtCtx_GetAllSuperclasses)

Detailed API Reference 69

Result

Description

In output, this parameter contains the number of superclasses returned
by the function.

superclassesOUTPUT/INPUT
For the functions MtCtxGetAllSuperclasses and
MtCtx GetAllSuperclasses which do not allocate memory, this
argument is an array allocated in the calling program. After the function
is called, this array will contain the superclasses of class or
className and their superclasses recursively.

For the functions MtCtxMGetAllSuperclasses and

MtCtx MGetAllSuperclasses which allocate memory, this argument
is a pointer to an array allocated by Matisse. The program must declare
a pointer to an MtOid. After declaring this pointer, the program must
pass the address of this pointer as the argument to the function. In
output, this pointer contains the address of the array that lists the
superclasses of class and their superclasses recursively.

This parameter can be set to NULL, in which case the function returns the
number of superclasses of class and its superclasses.

classNameINPUT

A class name.
class INPUT

A class identifier.

MATISSE SUCCESS
MATISSE ARRAYTOOSMALL
MATISSE CLASSEXPECTED
MATISSE CONNLOST

MATISSE DEADLOCKABORT
MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHCLASS

MATISSE NOTRANORVERSION
MATISSE NULLPOINTER

MATISSE OBJECTDELETED
MATISSE OBJECTNOTEFOUND
MATISSE TRANABORTED

MATISSE WAITTIME

The name of the class is not case sensitive. These functions can be called either
from within a transaction or during a version access.

The functions MtCtxGetAllSuperclasses and

MtCtx GetAllSuperclasses do not allocate an array to store the
superclasses of a class. The calling program must allocate an array of type
MtOid, then pass this array as its superclasses argument.

The functions Mt CtxMGetAllSuperclasses and
MtCtx_MGetAllSuperclasses allocate an array to store all the objects found.
When calling these functions, a program must pass as its superclasses

70

Matisse C API Reference

argument the address of a pointer to an MtOid. In output, this argument will
point to an array that contains the superclasses. To free the memory space
allocated for the array, the program must call the standard C function: free.

GetAttribute

Syntax MtSTS MtCtxGetAttribute
(MtContext ctx, MtOid* attribute,
MtString attributeName)

Purpose This function returns the schema descriptor for the attribute identified
byattributeName.

Arguments attributeQUTPUT
The attribute whose name is attributeName.
attributeNameINPUT
An attribute name.

Result MATISSE SUCCESS
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE INVALSTRINGSIZE
MATISSE MULTIPLYDEFINED
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHATT
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE TRANABORTED
MATISSE WAITTIME

Description The names of attributes are not case sensitive. This function can be called either
from within a transaction or during a version access.

GetClass

Syntax MtSTS MtCtxGetClass
(MtContext ctx, MtOid* class, MtString className)

Purpose This function returns the schema descriptor for the class identified by

className.

Arguments class OUTPUT
The class whose name is className.
classNameINPUT
A class name.

Detailed API Reference 71

Result MATISSE SUCCESS
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHCLASS
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE TRANABORTED
MATISSE WAITTIME

Description The names of the classes are not case sensitive. This function can be called
either from within a transaction or during a version access.

See also GetAttribute (p. 71)
GetClassAttribute (p. 72)
GetClassRelationship (p. 73)

GetRelationship (p. 90)

GetClassAttribute

Syntax MtSTS MtCtxGetClassAttribute
(MtContext ctx, MtOid* attribute,
MtString className,
MtString attributeName)

MESTS MtCtx GetClassAttribute
(MtContext ctx, MtOid* attribute,
MtOid classOid,

MtString attributeName)

Purpose This function returns the schema descriptor for the attribute identified

byattributeName and defined for the class className.

Arguments attributeQUTPUT
The attribute whose name is attributeName.
classNameINPUT
A class name.
classOidINPUT
A class object.
attributeNameINPUT

An attribute name.

Result MATISSE SUCCESS
MATISSE_ CONNLOST
MATISSE DEADLOCKABORT
MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHATT

72 Matisse C API Reference

Description

MATISSE NOSUCHCLASS
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE TRANABORTED
MATISSE WAITTIME

GetClassRelationship

Syntax

Purpose

Arguments

Result

Description

MtSTS MtCtxGetClassRelationship
(MtContext ctx, MtOid* relationship,
MtString className,

MtString relationshipName)

MtSTS MtCtx GetClassRelationship
(MtContext ctx, MtOid* relationship,
MtOid classOid,

MtString relationshipName)

This function returns the relationship identified by relationshipName and

defined for the class className.

relationshipOUTPUT
The relationship whose name is relationshipName.
classNameINPUT
A class name.
classOidINPUT
A class object.
relationshipNameINPUT
A relationship name.

MATISSE SUCCESS

MATISSE CONNLOST

MATISSE DEADLOCKABORT
MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHREL

MATISSE NOTRANORVERSION
MATISSE NULLPOINTER

MATISSE TRANABORTED

MATISSE WAITTIME

The names of the relationships are not case sensitive. This function can be
called either from within a transaction or during a version access.

The names of attributes are not case sensitive. This function can be called either
from within a transaction or during a version access.

Detailed API Reference

73

GetConfigurationInfo

Syntax MtSize MtCtxGetConfigurationInfo
(MtContext ctx, MtConfigurationType type)

Purpose This function provides information on the configuration of Matisse.

Arguments type INPUT
An Oid that indicates the kind of information to be retrieved. The
following two keys are accepted:
MT MAX BUFFERED OBJECTS, MT MAX INDEX KEY LENGTH

Description The following table lists the information returned for each key. Any other input
value is invalid. If an invalid value is entered, the function returns an invalid
value.

Key Purpose

MT MAX BUFFERED OBJECTS Returns the maximum number of
objects that can be passed as a
parameter to the functions:

MtCtxCreateNumObjects,
MtCtxLoadNumObjects,
MtCtxLoadObjects,
MtCtxLockNumObjects and
MtCtxLockObjects.

MT MAX INDEX KEY LENGTH Returns the maximum size of an index
key to be returned.

GetConnectionOption

Syntax MtSTS MtCtxGetConnectionOption
(MtContext connection,
MtConnectionOption option, ...)

Purpose This function retrieves the value associated with a connection option.

Arguments connectionOUTPUT

A previously allocated structure that contains information about the
database connection.

optionINPUT

The connection option. Possible values are:
MT SERVER EXECUTION PRIORITY, MT LOCK WAIT TIME,
MT DATA ACCESS MODE. INPUT

The other input arguments are option specific. For a full description, see
below.

74 Matisse C API Reference

Result

Description

MATISSE_ SUCCESS

MATISSE INVALCONNECTOPTION
MATISSE INVALCONNECTION
MATISSE NOCURRENTCONNECTION

Connection options affect the way you can interact with the database. You can
retrieve the values for the following options:

€ MT DATA ACCESS MODE. The associated value indicates the type of access

that is required on the database. You need to specify a pointer to a
MtDataAccessMode value to retrieve the value currently associated. The
options for the value are:

® MT DATA READONLY indicating restricted read only access to the data.

® MT DATA MODIFICATION indicating that read/write access is allowed
for the data objects and read only access is allowed for schema and
meta-schema objects.

® MT DATA DEFINITION indicating that read/write access is allowed for
data objects, schema and meta-schema objects.

The first two access modes optimize access to the schema. The

DATA DEFINITION access mode should be used only when schema or
meta-schema updates are necessary.

This option cannot be changed when the connection to the database is
open.

MT LOCK WAIT TIME. The associated value indicates the amount of time
(in milliseconds) the server will wait for access conflicts to be resolved; if
the wait time is exceeded, the explicit or implicit lock request is rejected.
You need to specify a pointer to a Mt LockWaitTime value to retrieve the
currently associated value.

MT SERVER EXECUTION PRIORITY indicates the priority of the requests
the connection sends to the database server. The higher the priority, the
faster the requests are executed. You must specify a pointer to a
MtServerExecutionPriority value to retrieve the currently associated
value. The possible values for Mt ServerExecutionPriority are:

MT MIN SERVER EXECUTION PRIORITY,

MT NORMAL SERVER EXECUTION PRIORITY,

MT ABOVE NORMAL SERVER EXECUTION PRIORITY or

MT MAX SERVER EXECUTION PRIORITY.

MT MEMORY TRANSPORT. This option allows use of the shared memory
transport rather than tcp or ticots for local access. The connection is first
opened using tcp or ticots, then if shared memory resources are available on
the machine, the connection is reopened in shared memory. The possible
values are:

m MT OFF (default): Does not allow shared memory transport for local
connection. This option cannot be changed when the connection to the
database is open.

Detailed API Reference

75

m MT ON: Allows shared memory transport for local connection. The
database’s confifguration file MEMORYTRANS parameter must be set to 1
(the default is 0) or MT ON will have no effect.

€ MT NETWORKTRANS BUFSZ: Sets the size of a network connection buffer.
The values are expressed in kilobytes. Allowed values are 32, 64, 128, and
256. The default value is 64.

€ MT MEMORYTRANS BUFSZ: Sets the size of a memory transport connection
buffer. The values are expressed in kilobytes. Allowed values are 32, 64,
128, and 256. The default value is 64

See also CurrentDate (p. 53)
SetListElements (p. 149)

GetDimension

Syntax MtSTS MtCtxGetDimension
(MtContext ctx, MtOid object, MtString attributeName,
MtSize rank, MtSize* dimension)
MtSTS MtCtx GetDimension
(MtContext ctx, MtOid object, MtOid attribute,
MtSize rank, MtSize* dimension)

Purpose These functions are used to get the dimension of each rank of an array or the
size of a list. They return the size of the array for a specific dimension (rank,
starting at 0) or the length of the list (rank must be set to 0).

Arguments object INPUT
An object.
attributeNameINPUT
An attribute name.
attributeINPUT
An attribute object.
rank INPUT
A dimension.
dimensionOUTPUT
When the attribute is an array, dimension contains the size of the array

for the dimension rank. If the attribute is a list, rank must be equal to
0, and dimension gives the number of elements in the list.

Result MATISSE SUCCESS
MATISSE ATTEXPECTED
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE INCOMPOP
MATISSE INVALRANKINDEX
MATISSE INVALSTRINGSIZE

76 Matisse C API Reference

MATISSE NOSUCHATT

MATISSE NOSUCHCLASSATT
MATISSE NOCURRENTCONNECTION
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER

MATISSE OBJECTDELETED
MATISSE OBJECTNOTEFOUND
MATISSE TRANABORTED

MATISSE WAITTIME

Description The names of the attributes are not case sensitive. These functions can be called
either from within a transaction or during a version access.

For a multidimensional array, the total number of dimensions is available to the
user through the function MtCtxGetValue. In order to determine the size for
any dimension, the user must call one of these functions for each dimension of
the array (with an array of n dimensions, the user must call one of these
functions » times using rank from 0 to n-1). An array may have up to 8
dimensions (n < 8).

See also GetValue (p. 95)

GetIndex

Syntax MESTS MtCtxGetIndex
(MtContext ctx, MtOid* index, MtString indexName)

Purpose This function returns the identifier of the index associated with the name
specified as an argument.

Arguments index OUTPUT
The identifier of the index.
indexNameINPUT

The name of the index.

Result MATISSE SUCCESS
MATISSE_ CONNLOST
MATISSE DEADLOCKABORT
MATISSE INVALSTRINGSIZE
MATISSE NOSUCHINDEX
MATISSE NOCURRENTCONNECTION
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE TRANABORTED
MATISSE WAITTIME

See also GetindexInfo (p. 78)
OpenindexEntriesStream (p. 126)

Detailed API Reference 77

GetIndexInfo

Syntax MtSTS MtCtxGetIndexInfo
(MtContext ctx, MtString indexName,
MtSize* nbOfEntries,
MtIndexCriteriaInfo* indexInfo,
MtSize* nbOfClasses, MtOid* classes)
MtSTS MtCtx GetIndexInfo
(MtContext ctx, MtOid index0Oid,
MtSize* nbOfEntries,
MtIndexCriteriaInfo* indexInfo,
MtSize* nbOfClasses, MtOid* classes)
MtSTS MtCtxMGetIndexInfo
(MtContext ctx, MtString indexName,
MtSize* nbOfEntries,
MtIndexCriteriaInfo** indexInfo,
MtSize* nbOfClasses, MtOid** classes)
MtSTS MtCtx MGetIndexInfo
(MtContext ctx, MtOid indexOid,
MtSize* nbOfEntries,
MtIndexCriteriaInfo** indexInfo,
MtSize* nbOfClasses, MtOid** classes)

Purpose This function returns information on the index whose name or identifier is
specified as an argument.

Arguments index0idINPUT

The identifier of the index.

indexNameINPUT
The name of the index.

nbOfEntriesOUTPUT
The number of entries in the index.
Can be set to NULL, in which case the function does not return the
number of entries.

1indexInfoOUTPUT/INPUT
For the functions MtCtxGetIndexInfo and MtCtx GetIndexInfo
which do not allocate memory, this argument is a pointer to a structure
of type MtCtxIndexCriterialnfo allocated in the calling program.
After the function is called, this structure will contain information on the
index.
For the functions MtCtxMGetIndexInfo and MtCtx MGetIndexInfo
which allocate memory, this argument is a pointer to a structure
allocated by Matisse. The calling program must declare a pointer to a
structure of type MtCtxIndexCriteriaInfo. After declaring this
pointer, the program must pass the address of this pointer as the
argument to the function. In output, this pointer contains the address of
the structure that contains index information.

78 Matisse C API Reference

This parameter can be set to NULL, in which case the function does not
return the address of this structure.

nbOfClassesOUTPUT
The number of classes linked to the index.
This parameter can be set to NULL, in which case the function does not
return the number of classes.

classesOUTPUT
A list of the classes in the index.

For the functions MtCtxGetIndexInfo and MtCtx_ GetIndexInfo
which do not allocate memory, this argument is a pointer to an array of
type MtOid allocated in the calling program. After the function is called,
this array will contain the identifiers of the different classes linked to the
index.

For the functions MtCtxMGetIndexInfo and MtCtx MGetIndexInfo
which allocate memory, this argument is a pointer to an array allocated
by Matisse. The calling program must declare a pointer to an array of
type Mtoid. After declaring this pointer, the program must pass the
address of this pointer as the argument to the function. In output, this
pointer contains the address of the array that lists the classes.

This parameter can be set to NULL, in which case the function does not
return the classes.

Result MATISSE SUCCESS
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE INDEXEXPECTED
MATISSE INDEXINCREATION
MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHINDEX
MATISSE NOTENOUGHSPACE
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE TRANABORTED
MATISSE WAITTIME

See also Getindex (p. 77)
OpenlindexEntriesStream (p. 126)

GetInstancesNumber

Syntax MtSTS MtCtxGetInstancesNumber
(MtContext ctx, MtSize* instancesNumber,
MtString className)
MtSTS MtCtx GetInstancesNumber
(MtContext ctx, MtSize* instancesNumber, MtOid class)

Detailed API Reference 79

Purpose These functions return the number of instances of the class specified as an
argument. Support for inheritance is considered: instancesNumber
corresponds to all the instances specific to the class and to its subclasses.

Arguments instancesNumberOUTPUT
The number of instances of the class that is specified as an argument.
Inheritance is considered.
classNameINPUT
A class name.
class INPUT
A class object.

Result MATISSE SUCCESS
MATISSE CLASSEXPECTED
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE INVALSTRINGSIZE
MATISSE NOSUCHCLASS
MATISSE NOCURRENTCONNECTION
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE TRANABORTED
MATISSE WAITTIME

Description The name of the classes returned is not case sensitive. These functions can be
called either from within a transaction or during a version access.

GetlListElements

Syntax MESTS MtCtxGetListElements
(MtContext ctx, MtOid object, MtString attributeName,
MtType type,
void* buflist,
MtSize* numElts,
MtSize firstEltOffset)
MtSTS MtCtx GetListElements
(MtContext ctx, MtOid object, MtOid attribute,
MtType type,
void* buflist,
MtSize* numElts,
MtSize firstEltOffset)

Purpose These functions retrieve a subset of the list value of the attribute for the
specified object. The subset begins at firstE1tOffset and its size is at most
numE1ts long.

Arguments object INPUT

80 Matisse C API Reference

An object.
attributeNameINPUT

An attribute name.
attributeINPUT

An attribute.
type INPUT

The expected type of the attribute.

Possible types are: MT BYTES, MT AUDIO, MT IMAGE, MT VIDEO,
MT NUMERIC LIST, MT SHORT LIST, MT INTEGER LIST,
MT DOUBLE LIST, MT FLOAT LIST.
bufListOUTPUT
This argument is the address of a variable allocated by the calling
program. After these functions are called, the subset (of the list)
retrieved is copied into the variable allocated in the calling program.
numEItsINPUT/OUTPUT
In input, this parameter indicates the maximum number of elements to
be read for the subset. In output it indicates the exact number of
elements of the subset.
firstEl1tOffsetINPUT
This parameter indicates the offset (or position) of the first element of
the subset to be retrieved. The first element of the stored list has a 0
offset.

Two specific values are allowed for firstEltOffset:
- MT_BEGIN_ OFFSET

- MT_CURRENT OFFSET

The first value indicates the first element of the list.

The second value indicates the position of the next element immediately
after the last accessed element.

Result MATISSE SUCCESS
MATISSE ATTEXPECTED
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE INVALLISTOFFSET
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHATT
MATISSE NOSUCHCLASSATT
MATISSE NOTENOUGHSPACE
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE TRANABORTED
MATISSE TYPEMISMATCH
MATISSE TYPENOTALLOWED
MATISSE WAITTIME

Detailed API Reference 81

Description

See also

The names of the attributes are not case sensitive. These functions can be called
either from within a transaction or during a version access.

When a program calls MtCtxGetListElements or

MtCtx GetListElements, Matisse does not allocate any memory space.
These functions copy the subset (of the list), according to numE1ts, into a
buffer allocated by the calling program.

Matisse internally manages an offset for each list. This offset is set to
firstEltOffset + numElts after every call to the
MtCtx*GetListElements or MtCtx*SetListElements functions. It can be
used for further access by specifying MT CURRENT_ OFFSET as the value for
the firstEltoffset argument. There is no default offset so

MT CURRENT OFFSET cannot be specified at the first call. The offset
management remains coherent only within the same transaction or version
access.

GetValue (p. 95)
SetListElements (p. 149)
SetValue (p. 151)

GetNumDataBytesReceived

Syntax MtSTS MtCtxGetNumDataBytesReceived
(MtContext ctx, MtSize* num)

Purpose This function returns the total number of bytes corresponding to the actual
transfer size of the Matisse objects, that have been read from the beginning of
the connection.

Arguments num OUTPUT
The number of bytes corresponding to the transfer size of the Matisse
objects that have been read from the beginning of the connection.
Result MATISSE SUCCESS
MATISSE NOCURRENTCONNECTION
MATISSE NULLPOINTER
GetNumDataBytesSent
Syntax MtSTS MtCtxGetNumDataBytesSent

(MtContext ctx, MtSize* num)

Purpose This function returns the total number of bytes corresponding to the total size of

the Matisse objects transferred, written from the beginning of the connection.

82

Matisse C API Reference

Arguments num OUTPUT
The number of bytes corresponding to the total size of the Matisse
objects transferred, written from the beginning of the connection.

Result MATISSE SUCCESS
MATISSE NOCURRENTCONNECTION
MATISSE NULLPOINTER

GetObjectClass

Syntax MtSTS MtCtxGetObjectClass
(MtContext ctx, MtOid* class, MtOid object)

Purpose This function returns the class of the object. The object object is loaded into
memory if it has not already been loaded.

Arguments class OUTPUT
The class of object.
object INPUT
An object.

Result MATISSE SUCCESS
MATISSE_ CONNLOST
MATISSE DEADLOCKABORT
MATISSE NOCURRENTCONNECTION
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE TRANABORTED
MATISSE WAITTIME

Description This function can be called either from within a transaction or during a version

access.

GetObjectsFromEntryPoint

Syntax MtSTS MtCtxGetObjectsFromEntryPoint
(MtContext ctx, MtSize* numObjects, MtOid* objects,
MtString entryPoint,
MtString dictName,
MtString className)

MESTS MtCtx GetObjectsFromEntryPoint
(MtContext ctx, MtSize* numObjects, MtOid* objects,
MtString entryPoint,
MtOid dictionary,
MtOid class)

Detailed API Reference

83

MtSTS MtCtxMGetObjectsFromEntryPoint
(MtContext ctx, MtSize* numObjects, MtOid** objects,
MtString entryPoint,
MtString dictName,
MtString className)
MtSTS MtCtx MGetObjectsFromEntryPoint
(MtContext ctx, MtSize* numObjects, MtOid** objects,
MtString entryPoint,
MtOid dictionary,
MtOid class)

Purpose These functions retrieve the objects of the specified class (if specified) and the
specified attribute accessed through entryPoint.

Arguments numObjectsINPUT/OUTPUT

In input, this parameter contains the size of the array specified by the
user. This parameter can be used as an input argument only by those
functions that do not allocate memory for the array of objects (i.e.
MtCtxGetObjectsFromEntryPoint and
MtCtx_GetObjectsFromEntryPoint.)
In output, this parameter gives the number of objects that are instances
of class class, define attribute attribute and use entry point
entryPoint.

objectsOUTPUT/INPUT
For the functions MtCtxGetObjectsFromEntryPoint and
MtCtx GetObjectsFromEntryPoint which do not allocate memory,
this argument is an array declared in the calling program. After the
function is called, this array will contain the retrieved objects.
For the functions MtCtxMGetObjectsFromEntryPoint and
MtCtx MGetObjectsFromEntryPoint which allocate memory, this
argument is a pointer to an array allocated by Matisse. The calling
program must declare a pointer to an MtOid. After declaring this
pointer, the program must pass the address of this pointer as the
argument to the function. In output, this pointer contains the address of
the array listing the objects that are instances of class class, define
attribute attribute, and use entry point entryPoint.
This parameter can be set to NULL, in which case the functions return
only the number of objects that are instances of class class, define
attribute attribute, and use entry point entryPoint.

entryPointINPUT
The name of an entry-point object.

dictNameINPUT
An entry-point dictionary name.

attributeINPUT
The identifier of an entry-point dictionary.

classNameINPUT
A class name. May be set to NULL.

Matisse C API Reference

Result

Description

class INPUT
The identifier of a class. May be set to 0.

MATISSE SUCCESS
MATISSE ARRAYTOOSMALL
MATISSE ATTEXPECTED

MATISSE CLASSEXPECTED
MATISSE CONNLOST

MATISSE DEADLOCKABORT
MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHATT

MATISSE NOSUCHCLASS

MATISSE NOSUCHCLASSATT
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER

MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE TRANABORTED

MATISSE WAITTIME

Entry points and the name of schema objects are not case sensitive. These
functions can be called either from within a transaction or during a version
access.

CAUTION: The MtCtx GetObjectsFromEntryPoint and
MtCtx_ MGetObjectsFromEntryPoint functions return the
error code MATISSE OBJECTNOTFOUND When the attribute
object or the class object is not found. When a
GetObjectsFromEntryPoint function is executed
successfully and no object corresponding to the request has
been found, the MaTISSE success code is returned and the
objects argument contains no objects.

The functions MtCtxGetObjectsFromEntryPoint and
MtCtx_GetObjectsFromEntryPoint do not allocate an array to store the
objects that are accessed. The calling program must allocate an array of type
Mtoid, then pass this array as its objects argument.

The functions MtCtxMGetObjectsFromEntryPoint and

MtCtx MGetObjectsFromEntryPoint allocate an array to store all the
identifiers found. When calling these functions, a program must pass as its
objects argument, the address of a pointer to an Mt0oid. In output, this
argument will point to an array that contains the objects. To free the memory
space allocated for the array, the program must call the standard C function:
free.

The program may also set the argument objects to NULL, in which case the
functions simply return the number of objects accessed through entryPoint.

Detailed API Reference

85

See also OpenEntryPointStream (p. 125)
SetValue (p. 151)

GetObjectsFromIndex

Syntax MtSTS MtCtxGetObjectsFromIndex
(MtContext ctx, MtSize numObjects,
MtOid* objects;
void* indexEntryl[],

MtSize nbOfCriteria,
MtString indexName,
MtString className)

MESTS MtCtx GetObjectsFromIndex
(MtContext ctx, MtSize numObjects,
MtOid* objects;
void* indexEntryl([],

MtSize nbOfCriteria,
MtOid index,
MtOid aClass)

MtSTS MtCtxMGetObjectsFromIndex
(MtContext ctx, MtSize numObjects,
MtOid** objects;
void* indexEntryl[],

MtSize nbOfCriteria,
MtString indexName,
MtString className)

MtSTS MtCtx MGetObjectsFromIndex
(MtContext ctx, MtSize numObjects,
MtOid** objects;
void* indexEntryl[],

MtSize nbOfCriteria,
MtOid index,
MtOid aClass)

Purpose These functions retrieve the objects of the specified class (if given) and the
specified attribute from the index given a set of criteria given in
indexEntryl[].

Arguments numObjects INPUT/OUTPUT
As input this parameter contains the size of the array specified by the
user. This parameter can be used as an input argument only by those
functions that do not allocate memory for the array of objects (i.e.,
MtCtxGetObjectsFromIndex and MtCtx GetObjectsFromIndex).

As output, this parameter gives the number of objects that are instances
of the class defined and that meet the criteria given in indexEntry.

86 Matisse C API Reference

Result

objects OUTPUT/INPUT
For the functions MtCtxGetObjectsFromIndex and
MtCtx_GetObjectsFromIndex which do not allocate memory, this
argument is an array declared in the calling program. After the function
is called this array will contain the retrieved objects.

For functions MtCtxMGetObjectsFromIndex and
MtCtx_MGetObjectsFromIndex which allocate memory, this argument
is a pointer to an array allocated by Matisse. The calling program must
declare a pointer to an Mtoid. After declaring this pointer, the program
must pass the address of this pointer as the argument to the function. In
output, this pointer contains the address of the array listing the objects
that are instances of the class, and meet the criteria given in
indexEntry[].
This parameter can be set to NULL, in which case the functions return
only the number of objects that are instances of the defined class and
attribute and that meet the given criteria.

indexEntry INPUT
The given criteria lookup values of the index request.

nbOfCriteria INPUT
The number of criteria to be considered during the index object lookup.
Matisse supports a maximum of four lookup criteria for any indexed
object.

indexName INPUT
Name of an index.

index INPUT
Identifier of an index

className INPUT
A class name. May be set to NULL.

AClass
The identifier of a class. May be set to NULL.

MATISSE SUCCESS

MATISSE ARRAYTOOSMALL
MATISSE CLASSEXPECTED
MATISSE CONNLOST

MATISSE DEADLOCKABORT
MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHCLASSINDEX
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTEFOUND
MATISSE TRANABORTED
MATISSE WAITTIME

MATISSE NOSUCHINDEX
MATISSE NOSCANNABLEINDEX
MATISSE INDEXEXPECTED

Detailed API Reference

87

Description The class argument is optional. You can specify a class if you want to put an
additional constraint on the index stream. For example, if the index groups
together instances of two or more classes, you can specify that instances of only
one class be returned by the function. Alternatively, you can set the argument to
NULL. Whether or not you specify a class, the instances that are returned are
those whose attributes possess values that were specified by the criteria given
by the indexEntry argument.

The argument nbOfCriteria designates the number of criteria taken into
account when instances from an object are returned. This argument designates
how many elements of the array indexEntry are taken into account.

CAUTION: When a GetObjectsFromIndex function is executed
successfully an no object corresponding to the request has
been found, the MATISSE succEss code is returned, and the
object’s argument contains no objects.

The functions MtCtxGetObjectsFromIndex and
MtCtx_GetObjectsFromIndex do not allocate an array to store the objects
that are accessed. The calling program must allocate an array of type MtOid,
then pass this array as its objects argument.

The functions MtCtxMGetObjectsFromIndex and
MtCtx_MgetObjectsFromIndex allocate an array to store all the identifiers
found. When calling these functions, a program must pass as its objects
argument, the address of a pointer to an MtOid. In output, this argument will
point to an array that contains the objects. To free the memory space allocated
for the array, the program must call the standard C function: free.

The program may also set the argument objects to NULL, in which case the
functions simply return the number of objects.

See also OpenindexEntriesStream (p. 126)
OpenindexObjectsStream (p. 129)
SetValue (p. 151)

GetPredecessors

Syntax MtSTS MtCtxGetPredecessors
(MtContext ctx, MtSize* numPredecessors,
MtOid* predecessors,
MtOid object,
MtString relationshipName)
MtSTS MtCtx GetPredecessors
(MtContext ctx, MtSize* numPredecessors,
MtOid* predecessors,

88 Matisse C API Reference

MtOid object,
MtOid relationship)
MtSTS MtCtxMGetPredecessors
(MtContext ctx, MtSize* numPredecessors,
MtOid** predecessors,
MtOid object,
MtString relationshipName)
MtSTS MtCtx MGetPredecessors
(MtContext ctx, MtSize* numPredecessors,
MtOid** predecessors,
MtOid object,
MtOid relationship)

Purpose These functions return an array that contains the object predecessors through

relationship Or relationshipName.

Arguments numPredecessorsINPUT/OUTPUT

In input, this parameter specifies the size of the array specified by the
user. This parameter can be used as an input argument only by those
functions that do not allocate memory for the array of objects (i.e.
MtCtxGetPredecessors and MtCtx GetPredecessors).
In output, this parameter gives the number of object identifiers of
predecessors returned by the function.

predecessorsOQUTPUT/INPUT
For the functions MtCtxGetPredecessors and
MtCtx GetPredecessors which do not allocate memory, this
argument is the address of an array allocated in the calling program.
After the function is called, this array will contain the predecessors of
object through relationship or relationshipName.
For the functions MtCtxMGetPredecessors and
MtCtx_ MGetPredecessors which allocate memory, this argument is a
pointer to an array allocated by Matisse. The calling program must
declare a pointer to an MtOid. After declaring this pointer, the program
must pass the address of this pointer as the argument to these functions.
In output, this pointer contains the address of the array that lists the
predecessors of object through relationship or
relationshipName.
This parameter can be set to NULL, in which case the function returns the
number of predecessors of object through relationship or
relationshipName.

object INPUT
An object.

relationshipNameINPUT
A relationship name.

relationshipINPUT
A relationship object.

Detailed API Reference 89

Result

Description

See also

MATISSE_SUCCESS
MATISSE ARRAYTOOSMALL
MATISSE CONNLOST

MATISSE DEADLOCKABORT
MATISSE INVALIREL

MATISSE INVALREL

MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHREL

MATISSE NOTRANORVERSION
MATISSE NULLPOINTER

MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE RELEXPECTED

MATISSE TRANABORTED

MATISSE WAITTIME

The name of the relationships is not case sensitive. These functions can be
called either from within a transaction or during a version access.

The argument numPredecessors specifies the number of objects in the array.

The functions MtCtxGetPredecessors and MtCtx GetPredecessors do
not allocate an array to store the predecessors to object through a relationship
relationship or relationshipName. The calling program must allocate an
array of type MtOid and then pass this array as its predecessors argument.

The functions MtCtxMGetPredecessors and MtCtx MGetPredecessors
allocate an array to store all the identifiers found. When calling these functions,
a program must pass as its predecessors argument the address of a pointer to
MtOid. In output, this argument will point to an array that contains the objects.
To free the memory space allocated for the array, the program can call the
standard C function: free.

OpenPredecessorsStream (p. 137)

GetRelationship

Syntax

Purpose

Arguments

MtSTS MtCtxGetRelationship
(MtContext ctx, MtOid* relationship,
MtString relationshipName)

This function returns the relationship whose name is relationshipName.

relationshipOUTPUT
The relationship whose name is relationshipName.
relationshipNameINPUT

A relationship name.

90

Matisse C API Reference

Result MATISSE SUCCESS
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE INVALSTRINGSIZE
MATISSE MULTIPLYDEFINED
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHREL
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE TRANABORTED
MATISSE WAITTIME

Description The name of the relationship is not case sensitive. This function can be called
either from within a transaction or during a version access.

GetRemovedSuccessors

Syntax MtSTS MtCtxGetRemovedSuccessors
(MtContext ctx, MtSize* numRemSuccessors,
MtOid* allRemSuccessors,
MtOid object,
MtString relationshipName)

MtSTS MtCtx GetRemovedSuccessors
(MtContext ctx, MtSize* numRemSuccessors,
MtOid* allRemSuccessors,

MtOid object,
MtOid relationship)

MtSTS MtCtxMGetRemovedSuccessors
(MtContext ctx, MtSize* numRemSuccessors,
MtOid** allRemSuccessors,

MtOid object,
MtString relationshipName)

MtSTS MtCtx MGetRemovedSuccessors
(MtContext ctx, MtSize* numRemSuccessors,
MtOid** allRemSuccessors,

MtOid object,
MtOid relationship)

Purpose These functions act through a relationship to retrieve the successors of an
object that have been removed during the current transaction.

Arguments numRemSuccessorsINPUT/OUTPUT
In input, this parameter contains the size of the array specified by the
user. This parameter can be used as an input argument only by those
functions that do not allocate memory for the array (i.e.
MtCtxGetRemovedSuccessors and
MtCtx GetRemovedSuccessors.)
In output, gives the number of successors that have been removed
during the current transaction.

Detailed API Reference 91

allRemSuccessorsOUTPUT/INPUT
For the functions MtCtxGetRemovedSuccessors and
MtCtx_GetRemovedSuccessors which do not allocate memory, this
argument is an array allocated in the calling program. After the function
is called, this array will contain the successors of object (through the
relationship RelationshipName or relationship) that have been
removed during the current transaction.

For the functions MtCtxMGetRemovedSuccessors and

MtCtx MGetRemovedSuccessors which allocate memory, this
argument is a pointer to an array allocated by Matisse, therefore the
calling program must declare a pointer to Mt0id. After declaring this
pointer, the program must pass the address of this pointer as the
argument to the function. In output, this pointer contains the address of
the array that lists the successors of object removed during the current
transaction.

This parameter can be set to NULL, in which case the function simply
returns the number of successors removed during the current transaction.

object INPUT

An object identifier.
relationshipNameINPUT

A relationship name.
relationshipINPUT

A relationship object.

Result MATISSE SUCCESS
MATISSE ARRAYTOOSMALL
MATISSE_ CONNLOST
MATISSE DEADLOCKABORT
MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHCLASSREL
MATISSE NOSUCHREL
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE RELEXPECTED

Description The name of relationship is not case sensitive. The functions can be called
either from within a transaction or during a version access. If they are called
during a version access, however, these functions are not useful since they
provide only the list of successors removed from the relationship and always
return numRemSuccessors set to 0.

The functions MtCtxGetRemovedSuccessors and

MtCtx_ GetRemovedSuccessors do not allocate an array to store the
successors to an object (through a relationship) that have been removed during
the current transaction. The calling program must allocate an array of type
MtOid then pass this array as its allRemSuccessors argument.

Matisse C API Reference

See also

The functions MtCtxMGetRemovedSuccessors and

MtCtx MGetRemovedSuccessors allocate an array to store all the identifiers
that are found. When calling these functions, a program must pass as its
allRemSuccessors argument, the address of a pointer to MtOid. In output,
this argument will point to an array that contains the objects. To free the
memory space allocated for the array, the program must call the standard C
function: free.

RemoveAllSuccessors (p. 141)
RemoveSuccessors (p. 143)

GetSuccessors

Syntax

Purpose

Arguments

MtSTS MtCtxGetSuccessors
(MtContext ctx, MtSize* numSuccessors,
MtOid* successors,
MtOid object,
MtString relationshipName)
MtSTS MtCtx GetSuccessors
(MtContext ctx, MtSize* numSuccessors,
MtOid* successors,
MtOid object,
MtOid relationship)
MtSTS MtCtxMGetSuccessors
(MtContext ctx, MtSize* numSuccessors,
MtOid** successors,
MtOid object,
MtString relationshipName)
MtSTS MtCtx MGetSuccessors
(MtContext ctx, MtSize* numSuccessors,
MtOid** successors,
MtOid object,
MtOid relationship)

If the relationship is a relationship defined for object, or an inverse
relationship of a relationship of which object can be a successor, these
functions return an array that contains all the objects that are successors
through the specified relationship.

numSuccessorsINPUT/OUTPUT
In input, this parameter contains the size of the array specified by the
user. It must be used as an input argument only by those functions that
do not allocate memory for the array of identifiers (i.e.
MtCtxGetSuccessors and MtCtx_GetSuccessors).
In output, this parameter gives the number of successors of the object
through relationship or relationshipName.
successorsOUTPUT/INPUT

Detailed API Reference

93

For the functions MtCtxGetSuccessors and MtCtx_GetSuccessors
which do not allocate memory, this argument is an array allocated in the
calling program. After the function is called, this array will contain the
successors of object through the relationship specified by

relationshipName Of relationship.

For the functions MtCtxMGetSuccessors and

MtCtx MGetSuccessors which allocate memory, this argument is a
pointer to an array allocated by Matisse. The calling program must
declare a pointer to an Mtoid. After declaring this pointer, the program
must pass the address of this pointer as the argument to the function. In
output, this pointer contains the array that lists the successors of object
through the relationship specified by relationshipName or

relationship.
This parameter can be set to NULL, in which case the function simply
returns the number of successors of object through relationship
relationship Or relationshipName.
object INPUT
An object.
relationshipNameINPUT
A relationship name.
relationshipINPUT
A relationship.

Result MATISSE SUCCESS
MATISSE ARRAYTOOSMALL
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE INVALREL
MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHCLASSREL
MATISSE NOSUCHREL
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE RELEXPECTED
MATISSE TRANABORTED
MATISSE WAITTIME

Description The name of the relationship is not case sensitive. These functions can be called
either from within a transaction or during a version access.

The argument numSuccessors specifies the number of objects in the array.

Matisse C API Reference

See also

GetUserError

Syntax
Purpose
Result

Description

See also

GetValue

Syntax

The functions MtCtxGetSuccessors and MtCtx GetSuccessors do not
allocate an array to store the object successors to object through the
relationship relationship or relationshipName. The calling program
must allocate an array of type Mt0id, then pass this array as its successors
argument.

The functions MtCtxMGetSuccessors and MtCtx_MGetSuccessors allocate
an array to store the identifiers that are found. When calling these functions, a
program must pass as its successors argument the address of a pointer to an
Mtoid. In output, this argument will point to an array that contains the
successors to object. To free the memory space allocated for the array, the
program can call the standard C function: free.

OpenSuccessorsStream (p. 139)

void* MtCtxGetUserError ()
This function returns the last user error that was generated.
The last user error.

The error identifier is set by the last call of the function
MtCtxMakeUserError.

MakeUserError (p. 111)

MtSTS MtCtxGetValue
(MtContext ctx, MtOid object, MtString attributeName,
MtType* type,
void* value,
MtSize* rank,
MtSize* size,
MtBoolean* defaultValueP)
MESTS MtCtx GetValue
(MtContext ctx, MtOid object, MtOid attribute,
MtType* type,
void* value,
MtSize* rank,
MtSize* size,
MtBoolean* defaultValueP)
MtSTS MtCtxMGetValue
(MtContext ctx, MtOid object, MtString attributeName,
MtType* type,

Detailed API Reference

95

Purpose

Arguments

void** value,

MtSize* rank,

MtBoolean* defaultValueP)

MESTS MtCtx MGetValue

(MtContext ctx, MtOid object, MtOid attribute,
MtType* type,

void** value,

MtSize* rank,

MtBoolean* defaultValueP)

These functions return the value of an attribute for the object specified as an
argument. The value corresponds to the default attribute value when the
attribute in the object has no value. If this is the case, defaultValuePis set to
MT TRUE.

object INPUT
An object.

attributeNameINPUT
An attribute name.

attributeINPUT
An attribute.

type OUTPUT
The type of the attribute. Possible types are: MT BOOLEAN,
MT BOOLEAN LIST, MT CHAR, MT DATE, MT DATE LIST,
MT DOUBLE, MT DOUBLE LIST, MT FLOAT, MT FLOAT LIST,
MT INTERVAL, MT INTERVAL LIST, MT NUMERIC,
MT NUMERIC LIST, MT NULL, MT_ SHORT, MT SHORT LIST,
MT INTEGER, MT_ INTEGER LIST, MT LONG, MT LONG LIST,
MT STRING, MT STRING LIST, MT TIMESTAMP,
MT TIMESTAMP LIST, MT BYTE, MT BYTES, MT TEXT,
MT AUDIO, MT VIDEO.

This parameter can be set to NULL, in which case the function does not
return the type of the attribute.

value OUTPUT
For the functions MtCtxGetValue and MtCtx_GetValue which do not
allocate memory, this argument is the address of a variable allocated in
the calling program. After these functions are called, the retrieved value
is copied to the variable allocated in the calling program.
When the type is not MT NULL, Matisse creates a copy of the attribute
in the address indicated by the user. When value is of type
MT STRING LIST, it contains an array of pointers, followed by the
corresponding strings.
For the functions MtCtxMGetValue and MtCtx_ MGetValue which
allocate memory, this argument is the address of a variable pointer
declared in the calling program. After these functions are called, the
pointer contains the address of the variable containing the value
retrieved by the function.

96

Matisse C API Reference

Result

This parameter can be set to NULL, in which case the function does not
return the value of the attribute. This is useful when the user is
interested in the type and the dimension of the attribute value, or the
size of this property.

rank OUTPUT
The number of dimensions of the value. This parameter can be set to
NULL, in which case the function does not return any information.

The number of dimensions of a value is equal to 0 for the following
types: MT BOOLEAN, MT CHAR, MT DATE, MT DOUBLE, MT FLOAT,
MT INTERVAL, MT NULL, MT SHORT, MT INTEGER, MT LONG,
MT NUMERIC, MT_ STRING MT TIMESTAMP, and MT BYTE. The number
of dimensions is equal to 1 for the MT * LIST, MT BYTES,
MT AUDIO, MT VIDEO and MT IMAGE types when the stored value is
not NULL and equal to 0 otherwise.

size INPUT/OUTPUT
In input, for the functions MtCtxGetValue and MtCtx_GetValue only,
size corresponds to the size in bytes of the buffer specified by the user.
In output, for all the functions, size corresponds to the size of the
buffer that contains the value that is returned.

This parameter can be set to NULL (which requires that value
is also set to null).Ifboththe size and value parameters are
set to NULL, the function does not return the size. This can be useful if
the user is interested in the type or the dimension of the attribute value.

In output, for all of the functions, size corresponds to the size of the
value that is returned. When the stored value is NULL, the size is equal
to 0.

defaultValuePOUTPUT

This parameter can be set to NULL, in which case the function does not
return any information for this parameter.

defaultValuePis set to MT TRUE when the attribute has no value in
the object, i.e., when the value that is returned corresponds to the default
attribute value.

defaultValuePis setto MT FALSE when the attribute has a value in
the object.

MATISSE SUCCESS

MATISSE ATTEXPECTED
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE INVALSTRINGSIZE
MATISSE NOSUCHATT
MATISSE NOSUCHCLASSATT
MATISSE NOCURRENTCONNECTION
MATISSE NOTENOUGHSPACE
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTEFOUND

Detailed API Reference

97

Description

Example 1

MATISSE TRANABORTED
MATISSE WAITTIME

The name of the attribute is not case sensitive. These functions can be called
either from within a transaction or during a version access.

If the attribute has not been assigned for the object and if the attribute has no
default value, Matisse assigns the default value of the attribute default
value, which has the type MT NULL.

When a program calls MtCtxGetValue or MtCtx_GetValue, Matisse does not
allocate any memory space. These functions copy the value into a buffer
allocated by the calling program. When value is of type MT STRING LIST, the
value returned by these functions is an array of pointers, followed by the
corresponding strings. The program that calls MtCtxGetValue or

MtCtx GetValue must allocate a buffer large enough to store all the pointers,
as well as the strings they point to, which are returned by the functions.

It is preferable to use the MtCtxGetValue or MtCtx GetValue functions to
retrieve values whose size is fixed, i.e., for values of type MT INTERVAL,

MT BOOLEAN, MT CHAR, MT DATE, MT DOUBLE, MT FLOAT, MT NUMERIC,

MT_ SHORT, MT INTEGER, MT LONG MT TIMESTAMP, and MT BYTE. If this is the
case, a program can get better memory management with the functions that do
not allocate memory space to store these values than with the functions
MtCtxMGetValue or MtCtx MGetValue which do allocate memory space.

When a program calls MtCtxMGetValue or MtCtx_MGetValue, Matisse
allocates sufficient space for the value. When value is of type

MT STRING_ LIST, the functions return an array of pointers and not a
multidimensional array of characters. A program that calls MtCtxMGetValue or
MtCtx MGetValue must declare a variable of the appropriate type and then
pass the address of this variable to these functions. When the data is no longer
used, you must free the space, using the MtMFree function.

The following programming example shows how to use the function
MtCtx_GetValue, which does not allocate memory space:

#define BUFSIZE 1000
MtOid person;

MtOid heightAtt;

MtOid ageAtt;

MtOid nameAtt;

MtType type;

MtSize rank;

MtSize size;

MtBoolean defaultValue;
MtInteger age;
MtInteger simpleHeight;
MtDouble complexHeight;
MtString name;

98

Matisse C API Reference

/* Update of person, heightAtt, ageAtt and
* nameAtt

*/

/* We save space for later
*/
name = (MtString) malloc (BUFSIZE) ;

/* Access when stored type is unknown
*/
size = BUFSIZE;
/* Look for the type of the heightAtt
* attribute (MT_INTEGER, MT DOUBLE or MT_NULL)
*/
MtCtx GetValue
(person, heightAtt,
&type, NULL, NULL, NULL, NULL);
switch (type) {
case MT NULL:
if (defaultValue)
printf ("proplOid is not specified\n");
else
printf ("value=nil\n");
break;
case MT INTEGER:
Mt GetValue
(person, heightAtt,
NULL, (void*)é&simpleHeight, NULL, NULL,
&defaultValue) ;
printf ("value = %d\n", * simpleHeight;
break;
case MT DOUBLE:
Mt GetValue
(person, heightAtt,
NULL, (void*)&complexHeight, NULL, NULL,

&defaultValue) ;
printf ("value = $f\n", * complexHeight);
break;
default:

printf ("Value of unknown type; %d\n", type);
}
/* Access when type is either MT NULL or MT INTEGER
*/
size = BUFSIZE;
Mt GetValue
(person, ageAtt,
&type, (void*) &age, NULL, &size, 0);
if (type == MT_NULL) {
printf ("prop20id is not specified\n");

Detailed API Reference

99

exit (0);
}
/* Access when type is either MT NULL or
* MT STRING
*/
size = BUFSIZE;
Mt GetValue
(person, nameAtt, &type,
(void*) name, NULL, &size, 0);
if (type == MT NULL) {
printf ("prop30id is not specified\n");
exit (0);
}

printf ("person %$s aged %d \n", name, age);

Example 2 The following programming example shows how to use the function
Mt MGetValue, which does allocate memory space:

#include <stdlib.h>
MtOid person;

MtOid heightAtt;

MtOid ageAtt;

MtOid nameAtt;
MtInteger age;

MtString name;

MtType type;

MtSize rank;

MtBoolean defaultValue;
MtInteger simpleHeight;
MtDouble MtDouble complexHeight;

/* Update of person, heightAtt, ageAtt and
* nameAtt
*/

name = (MtString) malloc (BUFSIZE) ;

/* Access when stored type is unknown
*/
MtCtx MGetValue
(person, heightAtt,
&type, &pValue, &rank, &defaultValue);
switch (type) {
case MT NULL:
if (defaultValue)
printf ("heightAtt is not specified\n");
else
printf ("value=nil\n");
break;

100

Matisse C API Reference

case MT INTEGER:
printf ("value = %d\n", (MT_ INTEGER*)pValue);
break;
case MT DOUBLE:
printf ("value = $f\n", * (MtDouble*)pValue));
break;
default:
printf ("Value of unknown type; %\n", type);
}
/* Memory space allocated by Matisse for
* this value is freed
*/
MtMFree (pValue) ;
/* Access when stored type is known
* Use MtCtx MGetValue preferably, so that
* Matisse does not allocate space only
* for a long only
*/
MtCtx MGetValue
(person, ageAtt,
&type, (void*) &age, NULL, NULL);
if (type == MT NULL) {
printf ("ageAtt is not specified\n");
exit (0);
}
MtCtx MGetValue
(person, nameAtt,
&type, (void*) &name, NULL, NULL);
if (type == MT NULL) {
printf ("nameAtt is not specified\n");
exit (0);
}

printf ("person %$s aged %d \n", name, *age);

/* End of use of the values of the
* attributes name and age. The memory space
* allocated by Matisse for these values is
* freed.
*/

MtMFree (age);

MtMFree (name);

See also GetDimension (p. 76)
GetListElements (p. 80)
SetlListElements (p. 149)

Detailed API Reference 101

IntervalAdd

Syntax MtSTS MtIntervalAdd
(MtInterval *result,

MtInterval *intervall,
MtInterval *interval2)

Purpose This function adds two Mt Interval values.

Arguments result INPUT
MtInterval result value.
intervall INPUT
An MtInterval value.
interval2 INPUT

An MtInterval value.

Result MATISSE SUCCESS
MATISSE NULLPOINTER
MATISSE INVALID TIMEINTERVAL.

See also TimestampGetCurrent (p. 173)

IntervalMultiply (p. 104)
IntervalSubtract (p. 105)

IntervalCompare

Syntax MtSTS MtIntervalCompare
(MtInteger *result,

MtInterval *intervall,
MtInterval *interval?l)

Purpose This function compares intervall to interval?.

Arguments result OUTPUT

An integer greater than, equal to, or less than 0, if the first interval

argument is repectively greater than, equal to, or less than the second
one.

intervall INPUT

An MtInterval value.
interval2 INPUT

An MtInterval value.

Result MATISSE SUCCESS
MATISSE NULLPOINTER
MATISSE INVALID TIMEINTERVAL.

102 Matisse C API Reference

IntervalDivide

Syntax

Purpose

Arguments

Result

See also

MtSTS MtIntervalDivide
(MtInterval *result,

MtInterval *interval

MtInteger nParts)
This function divides interval into nParts intervals.

result INPUT

MtInterval value returned.
interval INPUT

An MtInterval value.
nbParts INPUT

A signed 32-bit integer.

MATISSE SUCCESS

MATISSE NULLPOINTER

MATISSE DIVISION BY ZERO
MATISSE INVALID TIMEINTERVAL.

TimestampGetCurrent (p. 173)

IntervalMultiply (p. 104)
IntervalSubtract (p. 105)

IntervalBuild

Syntax

Purpose

Arguments

Result

Description

MtSTS MtIntervalBuild
(MtInterval *interval,
MtString buffer)

This function creates an Mt Interval value from its printed representation in
buffer.

interval INPUT
An MtInterval value.
buffer INPUT

A character string representing an interval in the following format:
[+|-]DD HH-MM-SS|[:uuuuuu] .
MATISSE SUCCESS
MATISSE NULLPOINTER
MATISSE INVALID TIMEINTERVAL.

The interval is built if buffer represents a valid interval.
For example:

MtIntervalExtract ("30 25:00:33", & time);

Detailed API Reference

103

will return MATISSE INVALID TIMEINTERVAL because 25 is not a valid value
for the hours field.

See also IntervalBuild (p. 103)

IntervalMultiply

Syntax MtTimestamp MtIntervalMultiply
(MtInterval *result,

MtInterval *interval

MtInteger nParts)
Purpose This function multiplies interval by npParts.

Arguments result INPUT
MtInterval value returned.
interval INPUT
An MtInterval value.
nParts INPUT
A signed 32-bit integer.

Result MATISSE SUCCESS
MATISSE NULLPOINTER
MATISSE INVALID TIMEINTERVAL.

See also TimestampGetCurrent (p. 173)
IntervalDivide (p. 103)
IntervalSubtract (p. 105)

IntervalPrint

Syntax MtSTS MtIntervalPrint
(MtString buffer,
MtSize bufferSize,
const char *format,
MtInterval *interval,)

Purpose This function outputs interval according to format into the character string
pointed to by buffer.

Arguments buffer OUTPUT
A character string into which the formatted interval will be stored.
bufferSize INPUT

An integer indicating the maximum number of character that can be
placed into buffer.

format INPUT

104 Matisse C API Reference

A character string containing directives to output the

different interval fields; possible directives are:

%s interval sign "-" or "+"

$D days (0 -1491308)

hours (00-23)

minutes (00-59)

seconds (00-59)

microseconds (000000..999999)
to print %

interval INPUT

=< T

G

o° d° o° oo o°
n

oe

The MtInterval structure to print.

Result MATISSE SUCCESS
MATISSE NULLPOINTER
MATISSE INVALID TIMEINTERVAL.

See also IntervalBuild (p. 103)

IntervalSubtract

Syntax MtSTS MtIntervalSubtract
(MtInterval *result,

MtInterval *intervall,
MtInterval *interval?l)

Purpose This function subtracts two Mt Interval values.

Arguments result INPUT
MtInterval result value.
intervall INPUT
An MtInterval value.
interval2 INPUT
An MtInterval value.

Result MATISSE SUCCESS
MATISSE INVALID TIMEINTERVAL.

See also TimestampGetCurrent (p. 173)
IntervalDivide (p. 103)

IntervalMultiply (p. 104)

IsInstanceOf
Syntax MtSTS MtCtxIsInstanceOf
(MtContext ctx, MtBoolean* result,
Detailed API Reference

106

MtOid object,
MtString className)
MtSTS MtCtx IsInstanceOf
(MtContext ctx, MtBoolean* result,
MtOid object,
MtOid class)

Purpose This function determines if the object object is or is not an instance of the
class className (or class) or an instance of one of its subclasses.

Arguments result OUTPUT

This argument is equal to MT TRUE if the object is an instance of the
class or of one of its subclasses.
This argument is equal to MT FALSE otherwise.

object INPUT
A Matisse object.

className INPUT
A class name.

class INPUT
A class object.

Result MATISSE SUCCESS
MATISSE CLASSEXPECTED
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHCLASS
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE TRANABORTED
MATISSE WAITTIME

Description The names of classes are not case sensitive.

IsPredefinedObject

Syntax MtSTS MtCtxIsPredefinedObject
(MtContext ctx, MtBoolean* predefinedP, MtOid object)

Purpose This function indicates whether the object specified as an argument is part of
the initial meta-schema.

Arguments predefinedP OUTPUT
This argument is set to 1 when the object belongs to the initial meta-
schema.

106 Matisse C API Reference

Result

LoadObjects

Syntax

Purpose

Arguments

Result

This argument is set to 0 otherwise.
object INPUT

This is the object to be tested to determine whether or not it is an
element of the initial meta-schema.

MATISSE SUCCESS

MATISSE CONNLOST

MATISSE DEADLOCKABORT
MATISSE NOCURRENTCONNECTION
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER

MATISSE OBJECTDELETED
MATISSE OBJECTNOTEFOUND
MATISSE WAITTIME

MtSTS MtCtxLoadNumObjects

(MtContext ctx, MtSize numObjects, MtOid* objects)
MtSTS MtCtxLoadObjects

(MtContext ctx, MtSize numObject,

MtOid firstObject, ...)

These functions load the value of the objects that are specified as arguments.

numObjects INPUT

The number of objects to load.
objects INPUT

An array of objects.
firstObject INPUT

First object to load.
Other INPUT arguments:

The argument firstobject is followed by the rest of the arguments to

load.

MATISSE SUCCESS
MATISSE CONNLOST

MATISSE DEADLOCKABORT
MATISSE EXCEEDSLIMIT
MATISSE INVALNB

MATISSE MEMORYFAULT

MATISSE NOCURRENTCONNECTION
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER

MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE TRANABORTED

MATISSE WAITTIME

Detailed API Reference

107

Description The objects may be specified either in an array or as a variable length list. In
MT DATA DEFINITION connection mode, when a class is loaded, its
superclasses are also loaded. In MT DATA MODIFICATION connection mode, all
the schema objects are loaded at connection time.

Calling this function ensures that no server access will read any of the objects
specified as arguments.

The value of the numObjects argument must not exceed the value returned by
the function MtCtxGetConfigurationInfo when its type argument is set to
MT_ MAX BUFFERED OBJECTS.

These functions can be called from within a transaction or during a version
access.

LockObjects

Syntax MESTS MtCtxLockNumObjects
(MtContext ctx, MtSize numObjects,
MtOid* objects,
MtLock* locks)

MtSTS MtCtxLockObjects
(MtContext ctx, MtSize numObjects,
MtOid firstObject,
MtLock firstLock,
-)

Purpose These functions lock objects.

Arguments numObjects INPUT

The number of objects to be locked.

objects INPUT
An array that contains the objects to be locked. The database
programmer is responsible for the memory space associated with the
array.

locks INPUT
An array that contains the locks with which the objects in objects
must be locked. The value of a lock can be either MT READ or
MT WRITE. The database programmer is responsible for the memory
space associated with the array.

firstObject INPUT

The first object to be locked.
firstLock INPUT

The lock associated with the first object to be locked.
Other INPUT arguments:

The identifiers of all other objects to be locked are entered after
firstObject.

108 Matisse C API Reference

Result

Description

Example

The argument firstLock is followed by the lock (MT_READ or
MT WRITE) associated with the objects.

MATISSE_ SUCCESS
MATISSE CONNLOST

MATISSE DEADLOCK

MATISSE EXCEEDSLIMIT
MATISSE FROZENOBJECT
MATISSE INVALLOCK

MATISSE INVALNB

MATISSE INVALOP

MATISSE NOCURRENTCONNECTION
MATISSE NOTRANS

MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE TRANABORTED

MATISSE WAITTIME

Locks are granted atomically: either all locks or no locks are granted.

Note that you can lock only a limited number of objects in a single transaction.
This limit is the value returned by the function MtCtxGetConfigurationInfo
when the type argument is set to MT MAX BUFFERED OBJECTS. If you try to
lock more than this number of objects, the error code MATISSE EXCEEDSLIMIT
is returned.

Note that when the error MATISSE DEADLOCK occurs, the transaction is not
aborted, however, no locks have been granted and the request must be
performed again.

These functions can be called only from within a transaction.

MtSTS status;
MtLock locks[3];
MtOid objects[3];

MtOid objl;

MtOid obj2;

MtOid obj3;

objects[0] = objl;

locks[0] = MT_READ;

objects[1l] = obj2;

locks[1] = MT WRITE;

objects[2] = obj3;

locks[2] = MT_ READ;

Status = MtCtxLockNumObjects (3, objects, locks);

CheckStatus (status)

status = MtCtxLockObjects (3,
objl, MT READ,
obj2, MT WRITE,
obj3, MT_READ);

CheckStatus (status)

Detailed API Reference

109

LockObjectsFromEntryPoint

Syntax MtSTS MtCtxLockObjectsFromEntryPoint
(MtContext ctx, MtLock lock,
MtString entryPoint,
MtString dictName,
MtString className)

MtSTS MtCtx LockObjectsFromEntryPoint

(MtContext ctx, MtLock Iock,
MtString entryPoint,
MtOid dictionary,
MtOid class)

Purpose These functions set locks of type 1ock (MT_READ, MT WRITE) on objects
whose entry point is given as an argument.

Arguments lock INPUT
The type of lock to be set on the objects accessed through entryPoint.
Its value can be either MT READ or MT WRITE.

entryPoint INPUT

The name of an entry point.
dictName INPUT

The name of an entry-point dictionary.
dictionary INPUT

An object (an entry-point dictionary).
className INPUT

A class name. Can be set to NULL.
class INPUT

An object (a class). Can be set to 0.

Result MATISSE SUCCESS
MATISSE ATTEXPECTED
MATISSE CLASSEXPECTED
MATISSE CONNLOST
MATISSE DEADLOCK
MATISSE FROZENOBJECT
MATISSE INVALLOCK
MATISSE INVALOP
MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHATT
MATISSE NOSUCHCLASS
MATISSE NOSUCHCLASSATT
MATISSE NOTRANS
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE TRANABORTED
MATISSE WAITTIME

110 Matisse C API Reference

Description Entry points and the name of schema objects are not case sensitive.

If one of these functions fails because of a deadlock or the wait-time expiration,

some locks may have already been granted. The request must be performed

again.

Note that when the error MATISSE DEADLOCK occurs, the transaction is not

aborted, however, no locks have been granted and the request must be
performed again.

These functions can be called only from within a transaction.

MakeUserError

Syntax MtSTS MtCtxMakeUserError

(MtContext ctx, void* error, MtString errorString)

Purpose This function allows you to generate a unique user error.

Arguments error INPUT

The user error. The identifier can be any data allowing the user to

specifically identify the error generated by this function.
errorString INPUT

The string to be attached to the user error.

Result MATISSE USERERROR

Description The error identifier is error; its code is MATISSE USERERROR; its string (the

error explanation) is errorString.

See also GetUserError (p. 95)
Failure (p. 56)

NextIndexEntry

Syntax MtSTS MtCtxNextIndexEntry
(MtContext ctx, MtStream stream,
void* values|[],

MtOid* object)

Purpose This function returns information on the next entry in the index stream.

Arguments stream INPUT
An index stream previously opened using either the
MtCtxOpenIndexEntriesStream Or
MtCtx_OpenIndexEntriesStream function.

Detailed API Reference

111

Result

Description

Example

See also

values OUTPUT

The values of the criteria at the index entry.
object OUTPUT

The object indexed by the criteria values.

MATISSE_SUCCESS
MATISSE CONNLOST

MATISSE DEADLOCKABORT
MATISSE ENDOFSTREAM

MATISSE INVALSTREAM

MATISSE INVALMAPFUNCTION
MATISSE INVALOP

MATISSE NOCURRENTCONNECTION
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER

MATISSE TRANABORTED

MATISSE WAITTIME

An index entry is composed of the following information:

criteria values,
the object indexed by the criteria values.

The object identifier returned by object is that of the current object in the
index stream. The values returned by values are those for the index criteria at
the current index entry. In other words, values contains the values of those
object attributes that form the criteria of the index.

Note that you must allocate space for the variable values before calling
MtCtxNextIndexEntry. values is an array of pointers, and each pointer
points to the memory allocated for each criterion value.

For example, suppose you have an index with the criteria name (string of 20
characters) and age (MtInteger). The declarations for these variables, as well
as the declaration of the array that contains pointers to these variables, are as
follows:

MtOid object;

void *values [2];

MtChar name [20];

MtInteger age;

values [0] = name;

values [1] = &age;

status = MtCtxNextIndexEntry

(stream, values, &object);

NextObject (p. 113)

NextObjects (p. 114)
OpenlindexEntriesStream (p. 126)

112

Matisse C API Reference

NextObject

Syntax

Purpose

Arguments

Result

Description

See also

MtSTS MtCtxNextObject
(MtContext ctx, MtStream stream, MtOid* object)

This function returns the next object in the stream.

stream INPUT

A class stream, an entry-point stream, a relationship stream, or an
inverse relationship stream.

object OUTPUT

The subsequent object in the stream, or NULL if there is no subsequent
element.

MATISSE SUCCESS

MATISSE CONNLOST

MATISSE DEADLOCKABORT
MATISSE ENDOFSTREAM
MATISSE INVALSTREAM
MATISSE INVALMAPFUNCTION
MATISSE INVALOP

MATISSE NOCURRENTCONNECTION
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE STREAMCLOSED
MATISSE TRANABORTED
MATISSE WAITTIME

Depending on the stream type, the identifier can be a class instance (see
MtCtxOpenInstancesStream), an object indexed by an entry point (see
MtCtxOpenEntryPointStream) or by an index (see
MtCtxOpenIndexEntriesStream), or by the object's successor (see
MtCtxOpenSuccessorsStream) or predecessor (see
MtCtxOpenIRelStream). Once all the objects have been accessed, the function
returns MATISSE ENDOFSTREAM, and object is set to 0.

This function can be called from within a transaction or during a version
access.

NextindexEntry (p. 111)

NextObjects (p. 114)
OpeninstancesStream (p. 132)

OpenEntryPointStream (p. 125)
OpenlindexEntriesStream (p. 126)
OpenPredecessorsStream (p. 137)
OpenSuccessorsStream (p. 139)

Detailed API Reference

113

NextObjects

Syntax MtSTS MtCtxNextObjects
(MtContext ctx, MtStream stream, MtOid* objects,
MtSize* numObjects)

Purpose This function returns the next objects in the stream.

Arguments stream INPUT
A class stream, an entry-point stream, a relationship stream, or an
inverse relationship stream.
object OUTPUT
The subsequent objects in the stream.
numObjects INPUT/OUTPUT

The number of objects required on input, the number of objects obtained
on output.

Result MATISSE SUCCESS
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE ENDOFSTREAM
MATISSE INVALSTREAM
MATISSE INVALMAPFUNCTION
MATISSE INVALOP
MATISSE NOCURRENTCONNECTION
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE STREAMCLOSED
MATISSE TRANABORTED
MATISSE WAITTIME

Description Depending on the stream type, the identifier is a class instance (see
MtCtxOpenInstancesStream), an object indexed by an entry point (see
MtCtxOpenEntryPointStream) or by an index (see
MtCtxOpenIndexEntriesStream), or the object's successor (see
MtCtxOpenSuccessorsStream) or predecessor (see
MtCtxOpenPredecessorsStream). Once all the objects have been accessed,
the function returns MATISSE ENDOFSTREAM.

This function can be called from within a transaction or during a version
access.

See also NextIndexEntry (p. 111)

NextObject (p. 113)
OpeninstancesStream (p. 132)

OpenOwnlinstancesStream (p. 136)
OpenEntryPointStream (p. 125)
OpenlindexEntriesStream (p. 126)

114 Matisse C API Reference

NextProperty

Syntax

Purpose

Arguments

Result

Description

OpenlindexObjectsStream (p. 129)

OpenPredecessorsStream (p. 137)
OpenSuccessorsStream (p. 139)

MtSTS MtCtxNextProperty
(MtContext ctx, MtStream objectStream,
MtOid* property,
MtBoolean* specifiedP)

This function gives the subsequent property in the stream.

objectStream INPUT
An object properties stream (This can be an object attribute, object
relationship or object inverse relationship stream).
property OUTPUT
The attribute, relationship, or 0 if there is no subsequent property.
specifiedP OUTPUT

Is set to MT_TRUE when the property has a value in the object;
otherwise, set to MT FALSE.

MATISSE_SUCCESS
MATISSE DEADLOCKABORT
MATISSE ENDOFSTREAM

MATISSE INVALSTREAM

MATISSE INVALMAPFUNCTION
MATISSE INVALOP

MATISSE NOCURRENTCONNECTION
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER

The stream includes the identifiers of either all the attributes, all the
relationships defined for the object, or all the inverse relationships present in
the object, depending on the stream type (A stream mapping the attributes, the
relationships, or the inverse relationships).

When the property has a value in the object, the speci fiedP argument is set
to MT TRUE; otherwise, specifiedPis set to MT FALSE.

If the stream has been opened with the
MtCtxOpenInverseRelationshipsStream function, the specifiedP
argument is always set to MT TRUE since the provided properties are those
present in the object.

Once all the properties (attributes, relationships, or inverse relationships) have
been returned, the function returns the MATISSE-ENDOFSTREAM status and
property is set to 0.

Detailed API Reference

115

This function can be called from within a transaction or during a version
access.

See also OpenAttributesStream (p. 124)
OpenlinverseRelationshipsStream (p. 134)
OpenRelationshipsStream (p. 138)

NextVersion

Syntax MtSTS MtCtxNextVersion
(MtContext ctx, MtStream versionStream,
MtString buf,
MtSize bufSize)

Purpose This function provides a string associated with the next version in the stream.

Arguments versionStream INPUT
The stream containing the enumeration of the saved versions that exist
in the database.
buf OUTPUT
The buffer used to insert the name of the next version mode.
bufSize INPUT
The size of the buffer.

Result MATISSE SUCCESS
MATISSE_ CONNLOST
MATISSE ENDOFSTREAM
MATISSE NOCURRENTCONNECTION
MATISSE NULLPOINTER
MATISSE NOTENOUGHSPACE

See also CommitTransaction (p. 48)
OpenVersionStream (p. 140)

NumericAdd

Syntax MtSTS MtNumericAdd
(MtNumeric *result,
MtNumeric *valuel,
MtNumeric *valuel?)

Purpose Adds two numeric values.

Arguments result OUTPUT
A numeric value into which the result of the addition is stored.
valuel INPUT

116 Matisse C API Reference

A numeric value.
value2 INPUT

A numeric value.

Result MATISSE SUCCESS
MATISSE NULLPOINTER
MATISSE NUMERICOVERFLOW

NumericBuild

Syntax MtSTS MtNumericBuild
(MtNumeric *result,
MtString buffer,
MtSize precision,
MtSize scale)

Purpose This function creates a numeric value given a character string and a desired
precision and scale.

Arguments string INPUT

The string containing the numeric value to be stored in the numeric
structure

precision INPUT

The desired precision of the numeric to be stored. A maximum precision
of 19 is supported.

scale INPUT
The desired scale of the numeric to be stored.
numeric OUTPUT
A pointer to the numeric structure into which the value will be stored.

Results MATISSE SUCCESS
MATISSE NUMERICOVERFLOW
MATISSE INVALNUMFORMAT

NumericCompare

Syntax MtSTS MtNumericCompare
(MtInteger *result,

MtNumeric *valuel,
MtNumeric *valuel?)

Purpose This function compares valuel to value?2.

Arguments result OUTPUT

Detailed API Reference 117

A positive integer if valuel is greater than value?2, 0 if valuel equals
value2, or a negative integer if valuel is less than value?2.

valuel INPUT
A numeric value.
value2 INPUT

A numeric value.

Result MATISSE SUCCESS
MATISSE NULLPOINTER

NumericDivide

Syntax MtSTS MtNumericDivide
(MtNumeric *result,
MtNumeric *valuel,
MtNumeric *value?l)

Purpose Divides valuel by value?2.

Arguments result OUTPUT
A numeric value into which the result of the division is stored.
valuel INPUT
A numeric value.
value2 INPUT

A numeric value.

Result MATISSE SUCCESS
MATISSE NULLPOINTER
MATISSE DIVISION BY ZERO
MATISSE NUMERICOVERFLOW

NumericFromDouble

Syntax MtSTS MtNumericFromDouble
(MtNumeric *result,
MtDouble *value)

Purpose To convert an MtDouble value into a numeric value.

Arguments result OUTPUT
A numeric value
value INPUT

An MtDouble value to convert.

118 Matisse C API Reference

Results MATISSE SUCCESS
MATISSE NUMERICOVERFLOW

NumericFromLong

Syntax MtSTS MtNumericFromLong
(MtNumeric *result,
MtLong *value)

Purpose To convert an MtLong value into a numeric value.

Arguments result OUTPUT
A numeric value
value INPUT
An MtLong value to convert.

Results MATISSE SUCCESS
MATISSE NUMERICOVERFLOW.

NumericGetPrecision

Syntax MtNumericGetPrecision
(MtSize *result,

MtString value)
Purpose Get the precision of a numeric value represented as a character string.

Arguments result OUTPUT
Number of digits of precision necessary to store the numeric value.
value INPUT

A character string containing the numeric value.

Result MATISSE SUCCESS
MATISSE INVALFORMAT.

NumericGetScale

Syntax MtNumericGetScale
(MtSize *result,

MtString value)

Purpose Get the number of digits after the decimal point of a numeric value
represented as a character string.

Detailed API Reference 119

Arguments result OUTPUT
Number of scale digits necessary to store the numeric value.
value INPUT

A character string containing the numeric value.

Result MATISSE SUCCESS
MATISSE INVALFORMAT.

NumericMultiply

Syntax MtNumericMultiply
(MtNumeric *result,
MtNumeric *valuel,
MtNumeric *value?)

Purpose Multiplies valuel by value2.

Arguments result OUTPUT
A numeric value into which the result is stored.
valuel INPUT
A numeric value.
value2 INPUT

A numeric value.

Result MATISSE SUCCESS
MATISSE NULLPOINTER
MATISSE NUMERICOVERFLOW

NumericPrint

Syntax MtSTS MtNumericPrint
(MtString buffer,
MtSize buffsz,
MtNumeric *value)

Purpose Creates a character string representation of value into buffer.

Arguments buffer OUTPUT
buffer where the numeric value to be printed is stored.
buffsz INPUT
Size of the buffer passed to the function.
numeric INPUT

A numeric value.

120 Matisse C API Reference

Result MATISSE SUCCESS
MATISSE ARRAYTOOSMALL
MATISSE INVALNUMFORMAT

NumericToDouble

Syntax MtSTS MtNumericToDouble
(MtDouble *result,
MtNumeric *value)

Purpose To convert an MtNumeric value into an MtDouble value.

Arguments result OUTPUT
An MtDouble value
value INPUT
A numeric value to convert.

Results MATISSE SUCCESS
MATISSE NUMERICOVERFLOW

NumericToLong

Syntax MtSTS MtNumericToLong
(MtLong *result,
MtNumeric *value)

Purpose To convert an MtNumeric value into an MtLong value.

Arguments result OUTPUT
An MtLong value
value INPUT
A numeric value to convert.

Results MATISSE SUCCESS
MATISSE NUMERICOVERFLOW

NumericRound

Syntax MtSTS MtNumericRound
(MtNumeric *result,
MtNumeric *value,
MtSize scale,
MtRounding roundingMethod)

Detailed API Reference

121

Purpose

Arguments

Results

Description

To round a numeric value to the specified scale, using the rounding method
specified by roundingMethod.

result OUTPUT

The numeric value the newly rounded value is to be stored in.
value INPUT

The numeric value to be rounded.
roundingMethod INPUT

The rounding method to be used.

MATISSE SUCCESS

MATISSE INVALNUMFORMAT
MATISSE NUMERICOVERFLOW

The parameter scale contains the number of digits to the right of the decimal
point to which to round the passed numeric value. If the value of scaleis
zero, all the digits to the right of the decimal point will be truncated. If the value
of scale is negative, the function will act as if it was passed a zero. A value of
scale greater than the current scale will leave the result unchanged. The scale
of the new rounded value will be the same as that of the scale parameter. The
precision however will be unchanged.

The parameter roundingMethod designates which type of rounding method is
to be used. It can take the following values:

MT ROUND_ HALF UP: If the digit to the right of the digit to be rounded to is
greater than or equal to five, the rounded digit will be incremented by one. If the
digit to the right of the rounded digit is less than five, the digits to the right of the
rounded digit will simply be discarded.

MT ROUND DEFAULT: Same as MT ROUND HALF UP.

MT_ ROUND_ CEILING: If the value of the numeric to be rounded is positive,
increment the digit to be rounded by one. Otherwise simply discard the digits to
the right of the digit to be rounded to.

MT ROUND HALF EVEN: Also known as Banker Rounding. If the digit to the
right of the digit to be rounded to is greater than five, increment to digit to be
rounded to by one. If the digit to the right of the digit to be rounded to is less than
five, simply discard the digits to the right of the rounding digit. If the value of
the digit to the right of the digit to be rounded to is equal to five, if the rounding
digit is an odd number, increment it so it is an even number. If the rounding digit
is even, simply discard the digits to the right.

MT ROUND_DOWN: Truncates the digits to the right of the digit to be rounded to.

122

Matisse C API Reference

MT ROUND_FLOOR: If the value of the numeric to be rounded is negative,
increment to digit to be rounded to by one. Otherwise simply discard the digits
to the right of the digit to be rounded to.

NumericSubtract

Syntax

Purpose

Arguments

Result

ObjectSize

Syntax

Purpose

Argument

Result

MtNumericSubtract
(MtNumeric *result,
MtNumeric *valuel,
MtNumeric *valueZ2)

Subtracts value2 from valuel.

result OUTPUT

A numeric value into which the result is stored.
valuel INPUT

A numeric value.
value2 INPUT

A numeric value.

MATISSE SUCCESS
MATISSE NULLPOINTER
MATISSE NUMERICOVERFLOW

MtSTS MtCtxObjectSize
(MtContext ctx, MtSize* size,MtOid object)

This function returns the size (in bytes) of the object when it is written to disk.

size OUTPUT

The size, expressed in bytes, of the object on the server.
object INPUT

An object.

MATISSE SUCCESS

MATISSE CONNLOST

MATISSE DEADLOCKABORT
MATISSE NOCURRENTCONNECTION
MATISSE NOTRANORVERSION
MATISSE OBJECTDELETED
MATISSE OBJECTNOTEFOUND
MATISSE TRANABORTED

MATISSE WAITTIME

Detailed API Reference

123

Description The size returned should help you estimate the cost (in bytes) of sending the
object across a network.

This function can be called either from within a transaction or during a version
access.

OidEQ

Syntax int MtOidEQ
(MtOid objectl, MtOid object?2)

Purpose Each Matisse object has a unique identifier (of type Mt0id) that provides a
means to denote or refer to the object. This function indicates if the two Oids
refer to the same object.

Arguments objectl INPUT
The identifier of a Matisse object.
object2INPUT
The identifier of a Matisse object.

Result 1 if the two Oids refer to the same object; 0 otherwise.

OpenAttributesStream

Syntax MtSTS MtCtxOpenAttributesStream
(MtContext ctx, MtStream* attStream,
MtOid object)

Purpose This function opens the object attribute stream objectAttStreamon the
specified object. The function MtCtxNextProperty will use the stream to
provide the user with the attributes of object.

Arguments attStream OUTPUT
The object attribute stream.
object INPUT
An object.

Result MATISSE SUCCESS
MATISSE_CONNLOST
MATISSE DEALOCKABORT
MATISSE INVALOP
MATISSE NOCURRENTCONNECTION
MATISSE NOTRANORVERSION
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND

124 Matisse C API Reference

Description

See also

MATISSE TRANABORTED
MATISSE WAITTIME

This function can be called from within a transaction or during a version

access.

CloseStream (p. 47)
GetAllAttributes (p. 60)

NextProperty (p. 115)

OpenEntryPointStream

Syntax

Purpose

Arguments

MtSTS MtCtxOpenEntryPointStream
(MtContext ctx, MtStream* entryPointStream,
MtString entryPoint,
MtString dictName,
MtString className,
MtSize nbObjectsPerCall)
MtSTS MtCtx OpenEntryPointStream
(MtContext ctx, MtStream* entryPointStream,
MtString entryPoint,
MtOid dictionary,
MtOid class,
MtSize nbObjectsPerCall)

These functions initialize the entry point stream: entryPointStream, based
on the arguments specified. The function MtCtxNextObject uses this stream
to provide the user with the objects accessed by the entry point entryPoint.

entryPointStreamOUTPUT

The entry point stream.
entryPointINPUT

An entry-point value.
attributeNameINPUT

An entry-point dictionary name.
dictionaryINPUT

An entry-point dictionary.
classNameINPUT

A class name. May be set to NULL.
class INPUT

A class object. May be set to 0.
nbObjectsPerCallINPUT

This argument allows you to specify the maximum number of objects
that will be retrieved at each server call. You may use the

MT MAX PREFETCHING keyword to prefetch the maximum number of
objects that can be handled in a request to the server.

Detailed API Reference

125

Result

Description

See also

MATISSE_SUCCESS
MATISSE ATTEXPECTED

MATISSE CLASSEXPECTED
MATISSE CONNLOST

MATISSE DEADLOCKABORT
MATISSE INVALOP

MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHATT
MATISSE_NOSUCHCLASS

MATISSE NOSUCHCLASSATT
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE_OBJECTDELETED
MATISSE_OBJECTNOTFOUND
MATISSE TRANABORTED

MATISSE WAITTIME

The name of classes are not case sensitive. These functions can be called either

from within a transaction or during a version access.

Adjusting the value of the nbobjectsPercCall argument allows you to tune
the maximum response time for further calls to the MtCtxNextObject
function. The greater the value of nbObjectsPercall, the shorter is the

overall enumeration.

CloseStream (p. 47)
GetObjectsFromEntryPoint (p. 83)

NextObject (p. 113)

NextObjects (p. 114)
SetValue (p. 151)

OpenIndexEntriesStream

Syntax

MtSTS MtCtxOpenIndexEntriesStream

(MtContext ctx, MtStream* indexStream,

MtString indexName,
MtString className,
MtDirection direction,
MtSize nbOfCriteria,
void* startValues]|[],
void* endValues|[],
MtSize nbEntriesPerCall)

MtSTS MtCtx OpenIndexEntriesStream

(MtContext ctx, MtStream* indexStream,

MtOid index,

MtOid class,
MtDirection direction,
MtSize nbOfCriteria,

126

Matisse C API Reference

void* startValues|[],
void* endvValues|[],
MtSize nbEntriesPerCall)

Purpose These functions initialize the index stream indexStream based on the
arguments specified. This stream enables you to assemble all the objects that
are within the bounds set by the arguments: startvalues and endvValues.

Arguments indexStreamOUTPUT
The stream of the index.
indexNameINPUT
An index name.
index INPUT
An index identifier.
classNameINPUT
A class name. Can be set to NULL.
class INPUT
A class identifier. Can be set to 0.
directionINPUT
The scan direction of the index stream. The direction can be from start
to end or from end to start.
nbofCriteriaINPUT
The number of criteria to be considered in the start and end values.
startValuesINPUT
Start values of the index request.
endValuesINPUT
End values of the index request.
nbEntriesPerCallINPUT
This argument allows you to specify the maximum number of entries
that will be retrieved at each server call. You may use the
MT_ MAX PREFECTCHING keyword to prefetch the maximum number of
entries that can be handled in a request to the server.

Result MATISSE SUCCESS
MATISSE CLASSEXPECTED
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE INDEXEXPECTED
MATISSE INVALCRITERIANB
MATISSE INVALDIRECTION
MATISSE INVALINTERVAL
MATISSE INVALOP
MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSCANNABLEINDEX
MATISSE NOSUCHCLASS
MATISSE NOSUCHCLASSINDEX
MATISSE NOSUCHINDEX

Detailed API Reference 127

Description

MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE TRANABORTED
MATISSE WAITTIME

The argument class is optional. You can specify a class if you want to put an
additional constraint on the index stream. For example, if the index groups
together instances of two or more classes, you can specify that instances of only
one class be associated with the stream. Alternatively, you can set the argument
to NULL.

Whether or not you specify a class through the argument class, the instances
that are grouped together in the stream are those whose attributes possess
values within the intervals specified by the arguments startvalues and
endValues.

The argument nbOfCriteria designates the number of criteria taken into
account when an index stream is opened. In other words, this argument
designates how many elements of the arrays startValues and endvalues to
take into account. You can specify NULL for its value. If you set
nbOfCriteria to 0, the values set for the arguments startvalues and
endValues are ignored.

The arguments startValues and endValues are arrays of pointers. It is
possible to leave an interval undefined for one or more criteria. To do this, set
the pointer to NULL for the criterion whose interval you want to leave undefined
in startValues or endValues.

The limits that you set with startValues and endValues must adhere to the
following constraint:

startValues < endValues

To illustrate this concept, suppose you have an index with the two criteria:
LastName and FirstName. Both of these criteria are built in ascending order.
Suppose that you are searching for all instances indexed, which have a Name
value equal to or greater than Flanagan and less than or equal to Petrocelli. In
addition, all the instances must have a value for FirstName that is greater than
or equal to Mike and less than or equal to Rico.

The values for these criteria are valid because the constraint startValues <
endValues is met. Flanagan < Petrocelli and Mike < Rico, as shown in the
following table:

Arguments Last Name First Name
startValues Flanagan Mike
endValues Petrocelli Rico

128

Matisse C API Reference

If startvalues were (Petrocelli, Rico) and endvalues were (Flanagan,
Mike), then these arguments would not have correct values. Because Petrocelli
and Rico are respectively greater than Flanagan and Mike, the constraint
startValues < endValues would not be met.

Note that the compare operator < deals with the ordering of the criteria. If the
name criterion had been created in descending order, then the constraint
described in the previous paragraph would be the reverse.

The argument di rection lets you specify a direction for the stream. You can
specify a stream that ascends from the instance with the lowest value to the
highest, or you can specify the a stream that descends from the instance with
the highest value to the lowest.

When a stream is opened on an index, the index in question is considered
frozen. No subsequent modifications made on the index will be visible during
the scan. Modifications will be visible when the next stream is opened on the
index.

These functions can be called from within a transaction or during a version
access.

Adjusting the value of the nbEntriesPercall argument allows you to tune
the maximum response time for further calls to MtCtxNextIndexEntry
function. The greater is the value, the shorter the overall enumeration.

See also CloseStream (p. 47)
Getlndex (p. 77)
GetlndexInfo (p. 78)

NextIndexEntry (p. 111)
NextObject (p. 113)
NextObjects (p. 114)

OpenIndexObjectsStream

Syntax MtSTS MtCtxOpenIndexObjectsStream
(MtContext ctx, MtStream* indexStream,
MtString indexName,

MtString className,
MtDirection direction,
MtSize nbOfCriteria,
void* startValues]|],
void* endvValues|[],
MtSize nbObjectsPerCall)

MESTS MtCtx OpenIndexObjectsStream
(MtContext ctx, MtStream* indexStream,
MtOid indexk,

MtOid class,

Detailed API Reference 129

MtDirection direction,
MtSize nbOfCriteria,
void* startValues]],
void* endValues|[],
MtSize nbObjectsPerCall)

Purpose These functions initialize the index stream indexStream depending on the

Arguments

Result

arguments specified. This stream enables you to assemble all the objects that
are within the bounds set by the arguments startvValues and endValues.

indexStreamOUTPUT
The stream of the index.
indexNameINPUT
An index name.
index INPUT
An index identifier.
classNameINPUT
A class name. This argument can be set to NULL.
class INPUT
A class identifier. This argument can be set to 0.
directionINPUT
The scanning direction of the index stream. The direction can be from
start to end or from end to start.
nbofCriteriaINPUT
The number of criteria to be considered in the start and end values.
startValuesINPUT
Start values of the index request.
endValuesINPUT
End values of the index request.
nbObjectsPerCallINPUT
This argument allows you to adjust the maximum number of objects that
will be retrieved for each server call. You may use the

MT MAX PREFETCHING keyword to prefetch the maximum number of
objects that can be handled in a request to the server.

MATISSE SUCCESS
MATISSE CLASSEXPECTED
MATISSE CONNLOST

MATISSE DEADLOCKABORT
MATISSE INDEXEXPECTED
MATISSE INVALCRITERIANB
MATISSE INVALDIRECTION
MATISSE INVALINTERVAL
MATISSE INVALOP

MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSCANNABLEINDEX
MATISSE NOSUCHCLASS

130

Matisse C API Reference

Description

MATISSE NOSUCHCLASSINDEX
MATISSE NOSUCHINDEX
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE TRANABORTED
MATISSE WAITTIME

The argument class is optional. You can specify a class if you want to put an
additional constraint on the index stream. For example, if the index groups
together instances of two or more classes, you can specify that instances of only
one class be associated with the stream. Alternatively, you can set the argument
to NULL. Whether or not you specify a class with the argument class, the
instances that are grouped together in the stream are those whose attributes
possess values within the intervals specified by the arguments startvalues
and endValues.

The argument nbOfCriteria designates the number of criteria taken into
account when an index stream is opened. In other words, this argument
designates how many elements of the arrays startValues and endvalues to
take into account. You can specify NULL for its value. If you set
nbOfCriteria to 0, the values set for the arguments startvalues and
endValues are ignored.

The arguments startValues and endValues are arrays of pointers. It is
possible to leave an interval undefined for one or more criteria. To do this, set
the pointer to NULL for the criterion whose interval you want to leave undefined
in startValues or endValues.

The limits that you set with startvalues and endvalues must adhere to the
following constraint:

startValues < endValues

To illustrate this concept, suppose you have an index with the two criteria:
Name and FirstName. Both of these criteria are built in ascending order.
Suppose that you want to search for all the instances indexed that have a value
for Name that is equal to or greater than Flanagan and less than or equal to
Petrocelli. In addition, all the instances must have a value for FirstName that
is greater than or equal to Mike and less than or equal to Rico.

The values for these criteria are valid because the constraint startvValues <
endValues is met. Flanagan < Petrocelli and Mike < Rico, as shown in the
following table:

Arguments Last Name First Name
startValues Flanagan Mike

endValues Petrocelli Rico

Detailed API Reference

131

If startvalues were (Petrocelli, Rico) and endvalues were (Flanagan,
Mike), then these arguments would not have correct values. Because Petrocelli
and Rico are respectively greater than Flanagan and Mike, the constraint
startValues < endValues would not be met.

Note that the compare operator < deals with the ordering of the criteria. If the
name criterion had been created in descending order, then the constraint
described in the previous paragraph would be the reverse.

The argument direction lets you specify a direction for the stream. You can
specify a stream that ascends from the instance with the lowest value to the
highest, or you can specify the a stream that descends from the instance with
the highest value to the lowest value.

When a stream is opened on an index, the index in question is considered
frozen. No subsequent modifications made on the index will be visible during
the scan. Modifications will be visible when the next stream is opened on the
index.

These functions can be called from within a transaction or during a version
access.

Adjusting the value of the nbObjectsPercall argument allows you to tune
the maximum response time for further calls to MtCtxNextObject (s)
functions. The greater is the value, the shorter is the overall enumeration.

When using these functions, the function MtCtxNextIndexEntry will return
the error MATIS SE_INVALMAPFUNCTION.

See also CloseStream (p. 47)
Getlndex (p. 77)
GetlndexInfo (p. 78)
NextIndexEntry (p. 111)
NextObject (p. 113)
NextObjects (p. 114)

OpenInstancesStream

Syntax MtSTS MtCtxOpenInstancesStream
(MtContext ctx, MtStream* instStream,
MtString className,
MtSize nbObjectsPerCall)
MtSTS MtCtx OpenInstancesStream
(MtContext ctx, MtStream* instStream, MtOid class,
MtSize nbObjectsPerCall)

132 Matisse C API Reference

Purpose

Arguments

Result

Description

See also

These functions initialize the stream of class instances instStream with the

class specified as an argument. The function MtCtxNextObject (or

MtCtxNextObjects) uses the stream to provide the user with the instances of

the class className (or class, depending on the function used).

instStreamOUTPUT

The class stream.
classNameINPUT

A class name.
class INPUT

A class.
nbObjectsPerCallINPUT

This argument allow you to specify the maximum number of instances

that will be retrieved at each server call. You may use the

MT MAX PREFETCHING keyword to prefetch the maximum number of

objects that can be handled in a request to the server.

MATISSE SUCCESS

MATISSE CLASSEXPECTED
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE INVALOP

MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHCLASS
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTEFOUND
MATISSE TRANABORTED
MATISSE WAITTIME

The name of class is not case sensitive. These functions can be
called either from within a transaction or during a version access.

Adjusting the value of the nbObjectsPercall argument allows you to tune
the maximum response time for further calls to MtCtxNextObject (s)
functions. The greater the value, the shorter the overall enumeration.

OpenOwnlinstancesStream (p. 136)
CloseStream (p. 47)

NextObject (p. 113)

NextObjects (p. 114)

Detailed API Reference

133

OpenInverseRelationshipsStream

Syntax MESTS MtCtxOpenInverseRelationshipsStream
(MtContext ctx, MtStream* iRelStream,
MtOid object)

Purpose This function opens the inverse relationship stream iRelStream on the
specified object. The function MtCtxNextProperty uses the stream to provide
the inverse relationships present in object.

Arguments iRelStreamOUTPUT
The inverse relationship stream.
object INPUT
An object identifier.

Result MATISSE SUCCESS
MATISSE_ CONNLOST
MATISSE DEALOCKABORT
MATISSE INVALOP
MATISSE NOCURRENTCONNECTION
MATISSE NOTRANORVERSION
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE TRANABORTED
MATISSE WAITTIME

Description An instance of a class can have a relationship that is not defined in the class.

Example For example, consider the following two class definitions:

MtClass
MtName / "Author"
MtAttributes-> Last Name/
MtRelationships->

MtClass
MtName/ "Book"
MtAttributes-> Title/
MtRelationships-> Written By->

Note that class Book defines a relationship Written By. This relationship of
course defines an inverse relationship.

134 Matisse C API Reference

The following diagram illustrates the definitions of the relationship Written
By and its inverse relationship, Selected Works:

MtRelationship
MtName/ "Selected Works"

MtSuccessors-> [Book]
MtInverseRelationship->
- "
MtRelationship
MtName/ "Written By"

MtSuccessors—-> [Author]

MtInverseRelationship->

h o
|

Imagine that one instance of Author and one instance of Book are created and
that for the instance of Book, the value of Written By is assigned to the
instance of Author.

The following diagram illustrates the resulting link established between an
instance of the class Book and an instance of the class Author through the
relationship Written By:

Book

Title/ "Othello"
{

Written By->

Person

Last Name/ "Shakespeare"

Selected Works->

You can see that in the instance of Book; Othello, the relationship Written
By is assigned to the instance of Author; Shakespeare.

Also, the inverse relationship Selected Works is created automatically for the
instance Shakespeare.

A stream opened by the function MtCtxOpenInverseRelationshipsStream
retrieves only those inverse relationships that exist for an object. An object
inverse relationship stream opened on the instance Shakespeare, for example,
will retrieve the inverse relationship Selected Works.

Detailed API Reference 135

The stream opened by the function
MtCtxOpenInverseRelationshipsStream gives access to all the inverse
relationships that are set for an object.

This function can be called either from within a transaction or during a version
access.

Listing Possible A stream opened by the function MtCtxOpenInverseRelationshipsStream
Inverse retrieves only those inverse relationships that exist for an object.

Relationships of a
Class Itis possible to determine all of inverse relationships types that can exist for

instances of a particular class. You can retrieve this information with the
GetAllInverseRelationships functions. These functions return a listing of
all possible types of inverse relationships for a class.

MtCtxGetAllInverseRelRelationships retrieves information on all the
possible inverse relationships implied at the schema level.
MtCtxOpenInverseRelationshipsStream retrieves all the inverse
relationships that have been established for an instance of a given class.

See also CloseStream (p. 47)
GetAllinverseRelationships (p. 62)

NextProperty (p. 115)

OpenOwnInstancesStream

Syntax MtSTS MtCtxOpenOwnInstancesStream
(MtContext ctx, MtStream* instStream,
MtString className,
MtSize nbObjectsPerCall)
MtSTS MtCtx OpenOwnInstancesStream
(MtContext ctx, MtStream* instStream, MtOid class,
MtSize nbObjectsPerCall)

Purpose These functions initialize the stream of instances of the class specified by
classStrean (subclasses are not initialized) with the class specified as an
argument. The function MtCtxNextObject (or MtCtxNextObjects) uses the
stream to provide the user with the instances of the class className (or
class, depending on the function used). The instances of any subclasses are
not returned by this function.

Arguments instStreamOUTPUT
The class stream.
classNameINPUT
A class name.
class INPUT
A class.

136 Matisse C API Reference

Result

Description

See also

nbObjectsPerCallINPUT

This argument allows you to specify the maximum number of instances

that will be retrieved at each server call. You may use the

MT MAX PREFETCHING keyword to prefetch the maximum number of

objects that can be handled in a request to the server.

MATISSE SUCCESS

MATISSE CLASSEXPECTED
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE INVALOP

MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHCLASS
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTEFOUND
MATISSE TRANABORTED
MATISSE WAITTIME

The name of class is not case sensitive. These functions can be
called either from within a transaction or during a version access.

Adjusting the value of the nbObjectsPercall argument allows you to tune
the maximum response time for further calls to MtCtxNextObject (s)
functions. The greater the value, the shorter the time of the overall enumeration.

OpeninstancesStream (p. 132)

CloseStream (p. 47)

NextObject (p. 113)
NextObjects (p. 114)

OpenPredecessorsStream

Syntax

Purpose

MtSTS MtCtxOpenPredecessorsStream
(MtContext ctx, MtStream* predStream,

MtOid object,

MtString relationshipName)

MtSTS MtCtx OpenPredecessorsStream
(MtContext ctx, MtStream* predStream,

MtOid object,
MtOid relationship)

These functions initialize the relationship stream predstream. The function
MtCtxNextObject (or MtCtxNextObjects) uses the stream to provide the
user with the predecessors of the object object through the relationship
relationshipName (or relationship, depending on the function used).

Detailed API Reference

137

Arguments predStreamOUTPUT

The stream of the relationship.
object INPUT

An object.
relationshipNameINPUT

A relationship name.
relationshipINPUT

A relationship object.

Result MATISSE SUCCESS
MATISSE_ CONNLOST
MATISSE DEADLOCKABORT
MATISSE INVALIREL
MATISSE INVALOP
MATISSE INVALREL
MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHREL
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE RELEXPECTED
MATISSE TRANABORTED
MATISSE WAITTIME

Description The name of the relationship is not case sensitive. These functions can be called
either from within a transaction or during a version access.

See also CloseStream (p. 47)
NumericGetScale (p. 119)

NextObject (p. 113)

OpenRelationshipsStream

Syntax MESTS MtCtxOpenRelationshipsStream
(MtContext ctx, MtStream* relStream,
MtOid object)

Purpose This function opens the object relationship stream objectRelStream on the
specified object. The function MtCtxNextProperty uses the stream to provide
the relationships that are set for object.

Arguments relStreamOUTPUT
The object relationship stream.
object INPUT
An object.

138

Matisse C API Reference

Result MATISSE SUCCESS
MATISSE CONNLOST
MATISSE DEALOCKABORT
MATISSE INVALOP
MATISSE NOCURRENTCONNECTION
MATISSE NOTRANORVERSION
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE TRANABORTED
MATISSE WAITTIME

Description Note that the function MtCtxGetAllRelationships retrieves all the
relationships possible for an instance of a given class.
MtCtxGetAllRelationships works at the schema level, while
MtCtxOpenRelationshipsStream works at the data level.

This function can be called from within a transaction or during a version
access.

See also CloseStream (p. 47)
GetAllRelationships (p. 66)

NextProperty (p. 115)

OpenSuccessorsStream

Syntax MtSTS MtCtxOpenSuccessorsStream
(MtContext ctx, MtStream* succStream,
MtOid object,
MtString relationshipName)

MtSTS MtCtx OpenSuccessorsStream
(MtContext ctx, MtStream* succStream,
MtOid object,

MtOid relationship)

Purpose These functions open the relationship stream relStreamon object. The
function MtCtxNextObject uses the stream to provide the user with the
successors of the object object through the relationship relationshipName
(or relationship, depending on the function used).

Arguments succStream OUTPUT

The stream of relationship.
object INPUT

An object.
relationshipNameINPUT

A relationship name.
relationshipINPUT

A relationship.

Detailed API Reference 139

Result MATISSE SUCCESS
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE INVALOP
MATISSE INVALREL
MATISSE INVALSTRINGSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHCLASSREL
MATISSE NOSUCHREL
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE RELEXPECTED
MATISSE TRANABORTED
MATISSE WAITTIME

Description The name of the relationship is not case sensitive. These functions can be called
either from within a transaction or during a version access.

See also CloseStream (p. 47)
GetSuccessors (p. 93)

NextObject (p. 113)
NextObjects (p. 114)

OpenVersionStream

Syntax MtSTS MtCtxOpenVersionStream
(MtContext ctx, MtStream* versionStream)

Purpose This function initializes the stream of versions stored in the database. The
function MtCtxNextVersion uses this stream to return the version identifier

Arguments versionStreamOUTPUT
The stream of saved versions that exist in the database.

Result MATISSE SUCCESS
MATISSE NOCURRENTCONNECTION

See also NextVersion (p. 116)
StartVersionAccess (p. 169)
CloseStream (p. 47)

PError

Syntax void MtCtxPError (MtContext ctx, MtString comment)

140 Matisse C API Reference

Purpose This function prints the entire error message on the stream stderr.

Arguments commentINPUT
The error message is prefixed with the string comment.

Example After an error of type NOSUCHHOST, the call to MtCtxPError ("Ask system
engineer for help") results in the following message:

Ask system engineer for help: MATISSE E NOSUCHHOST, host
bentley not found.

Print
Syntax MtSTS MtCtxPrint
(MtContext ctx, MtOid object, FILE* stream)
Purpose This function prints the object object.
Arguments object INPUT

The object to be printed.
stream INPUT

The print stream. Use stdout if you want the message to be printed to
the screen.

Result MATISSE SUCCESS
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE NOCURRENTCONNECTION
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE TRANABORTED

Description This function can be called from within a transaction or during a version
access.

RemoveAllSuccessors

Syntax MESTS MtCtxRemoveAllSuccessors
(MtContext ctx, MtOidobject, MtString relationshipName)

MtSTS MtCtx RemoveAllSuccessors
(MtContext ctx, MtOidobject, MtOid relationship)

Purpose These functions remove the relationship relationshipName and its
successors from object.

Detailed API Reference 141

RemoveObject

Arguments

Result

Description

See also

Syntax

Purpose

Arguments

object INPUT

An object.
relationshipNameINPUT

A relationship name.
relationshipINPUT

A relationship object.

MATISSE SUCCESS

MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE FROZENOBJECT
MATISSE INVALMODIF
MATISSE INVALPROREMOVE
MATISSE INVALREL
MATISSE INVALSTRINGSIZE
MATISSE METASCHEMAOBJECT
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCCESSORS
MATISSE NOSUCHCLASSREL
MATISSE NOSUCHFUNC
MATISSE NOSUCHREL
MATISSE NOTRANS

MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE RELEXPECTED
MATISSE SFUNCERRORABORT
MATISSE TRANABORTED
MATISSE USERERROR
MATISSE WAITTIME

Modifications are checked during MtCtxCommitTransaction.

The name of relationship is not case sensitive. These functions can be called
only from within a transaction.

GetRemovedSuccessors (p. 91)
RemoveSuccessors (p. 143)

MtSTS MtCtxMtCtxRemoveObject (MtContext ctx, MtOid object)

This function deletes object and updates the inverse links, entry points, and
indexes.

object INPUT
An object.

142

Matisse C API Reference

Result MATISSE SUCCESS
MATISSE CLASSWITHINSTANCES
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE FROZENOBJECT
MATISSE INVALMODIF
MATISSE INVALOP
MATISSE INVALSTATUS
MATISSE MESSWITHINTERP
MATISSE METASCHEMAOBJECT
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHFUNC
MATISSE NOTRANS
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE SFUNCERRORABORT
MATISSE TRANABORTED
MATISSE USERERROR
MATISSE WAITTIME

Description If the object was the only successor of a property, the property is removed from
the object that it qualified. If the object was the only object pointed to by an
entry point, the entry point is deleted.

During MtCtxCommitTransaction, all objects indirectly modified are
checked and an error can be generated at this point.

This function can be called only from within a transaction.

RemoveSuccessors

Syntax MtSTS MtCtxRemoveSuccessors
(MtContext ctx, MtOid object,
MtString relationshipName,
MtSize numSuccessors, ...)

MtSTS MtCtx RemoveSuccessors
(MtContext ctx, MtOidobject,
MtOid relationship,

MtSize numSuccessors, ...)

MtSTS MtCtxRemoveNumSuccessors
(MtContext ctx, MtOid object,
MtString relationshipName,
MtSize numSuccessors,

MtOid* successors)

MtSTS MtCtx RemoveNumSuccessors
(MtContext ctx, MtOidobject,
MtOid relationship,

MtSize numSuccessors,
MtOid* successors)

Detailed API Reference 143

Purpose These functions remove the successors from the relationship.

Arguments object INPUT

An object.
relationshipNameINPUT

A relationship name (a string).
relationshipINPUT

A relationship object.
numSuccessorsINPUT

The number of successors to remove.
successorsINPUT

The array of the successors to be removed.
Other INPUT arguments:

For MtCtxRemoveSuccessors and MtCtx RemoveSuccessors, the
argument numSuccessors must be followed by the successors (type
Mt0id) to be removed.

Result MATISSE SUCCESS
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE FROZENOBJECT
MATISSE INVALCLASSMODIF10
MATISSE INVALINDEXMODIF3
MATISSE INVALINDEXMODIFS
MATISSE INVALMODIF
MATISSE INVALNB
MATISSE INVALPROREMOVE
MATISSE INVALREL
MATISSE INVALSTRINGSIZE
MATISSE METASCHEMAOBJECT
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHCLASSREL
MATISSE NOSUCHFUNC
MATISSE NOSUCHREL
MATISSE NOSUCHSUCC
MATISSE NOTRANS
MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE RELEXPECTED
MATISSE SFUNCERRORABORT
MATISSE TRANABORTED
MATISSE UNEXPECTEDDUPLICATES
MATISSE USERERROR

MATISSE WAITTIME
Description These functions do not apply to inverse relationships.

Modifications are checked and saved on the server during

MtCtxCommitTransaction.

144 Matisse C API Reference

See also

RemoveValue

Syntax

Purpose

Arguments

Result

Description

The name of relationship is not case sensitive.

These functions can be called only from within a transaction.

GetRemovedSuccessors (p. 91)
RemoveAllSuccessors (p. 141)

MtSTS MtCtxRemoveValue

(MtContext ctx, MtOidobject,MtStringattributeName)

MtSTS MtCtx RemoveValue

(MtContext ctx, MtOidobject, MtOidattribute)

These functions remove the value associated with attribute in object.
Subsequent calls to retrieve the associated value will

return the attribute default value.

object INPUT

An object.
attributeNameINPUT

An attribute name.
attributeINPUT

An attribute object.

MATISSE SUCCESS

MATISSE ATTEXPECTED
MATISSE CONNLOST
MATISSE DEADLOCKABORT
MATISSE FROZENOBJECT
MATISSE INVALMODIF
MATISSE INVALSTRINGSIZE
MATISSE METASCHEMAOBJECT
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHATT
MATISSE NOSUCHCLASSATT
MATISSE NOSUCHFUNC
MATISSE NOTRANS

MATISSE NOVALUE

MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE SFUNCERRORABORT
MATISSE TRANABORTED
MATISSE USERERROR
MATISSE WAITTIME

Modifications are validated and saved during MtCtxCommitTransaction (the

default value must be valid for the object).

Detailed API Reference

145

The name of attributes is not case sensitive.
These functions can be called only from within a transaction.

See also SetValue (p. 151)

146 Matisse C API Reference

SetConnectionOption

Syntax

MtSTS MtCtxSetConnectionOption

(MtContext connection,
MtConnectionOption option, ...)

Purpose This function sets a connection option.

Arguments

Result

Description

connectionINPUT

A previously allocated structure that contains the information about the
database connection.

optionINPUT

The connection option to be set. Possible values are:

MT SERVER EXECUTION PRIORITY, MT LOCK WAIT TIME,
MT DATA ACCESS MODE, MT LOCKING POLICY

. INPUT

The other input arguments are option specific. See below for a full
description.

MATISSE SUCCESS

MATISSE INVALOP

MATISSE INVALPRIO

MATISSE INVALWAITTIME
MATISSE INVALCONNECTOPTION
MATISSE INVALCONNECTION

Connection options affect the way you can interact with the database. You can
specify different values for the following options:

€ MT DATA ACCESS MODE. This option allows you to specify the type of
access that you intend to use when connecting to the database.
Possible values are:

MT DATA READONLY allows read only access to the data objects and to
the schema. Any attempt to start a transaction will fail (only
MtCtxStartVersionAccess is allowed).

MT DATA MODIFICATION allows read/write access to the data objects
and read only access to the schema. This is the default mode.

MT DATA DEFINITION allows read/write access to the data objects and
to the schema.

The first two access modes optimize the access to the schema. The
DATA DEFINITION access mode must be used only when schema or
meta-schema updates are necessary.

This option cannot be changed when the connection to the database is
open.

€ MT LOCK WAIT TIME. This option allows you to specify the amount of
time the server waits for access conflicts to be resolved; if a timeout occurs
(wait-time expires), the explicit or implicit lock request is rejected. The
possible values are:

Detailed API Reference

147

® MT NO_WAIT: If the lock cannot immediately be granted, the lock
request is released and the function returns immediately.

B MT WAIT FOREVER: The server waits until there is a deadlock or until
the lock is granted. This is the default value.

®m A positive integer of type MtLockWaitTime: This is the time (in
milliseconds) that the server waits for the lock to be granted. If the wait-
time expires, the lock request is rejected. If a deadlock occurs, the
transaction fails or the lock request is rejected (explicit locks requested
for example through MtCtxLockObjects do not cause a transaction to
fail).
When multiple objects are requested, the wait-time applies to each
object request individually. The wait-time affects the process of
obtaining locks for reads and writes within transactions. Object version
requests are affected neither by locks nor by wait-times.

€ MT SERVER EXECUTION PRIORITY. This option allows you to specify the

priority of the requests that the connection will send to the database server.
The higher it is the faster the requests will be executed. The possible values
are:

MT MIN SERVER EXECUTION PRIORITY. This is the default value.

MT NORMAL SERVER EXECUTION PRIORITY
MT ABOVE NORMAL SERVER EXECUTION PRIORITY

MT MAX SERVER EXECUTION PRIORITY.

This option cannot be changed when the connection to the database is open.

MT LOCKING_ PoOLICY. This option allows the server to be configured to
handle requests for read locks using write locks instead. The possible values
are:

B MT DEFAULT ACCESS (default): Normal behavior, requests for read
locks result in read locks.

m MT ACCESS FOR _UPDATE: Requests for read locks result in write locks.
This option may be changed at any time.

Changing the locking policy to MT ACCESS FOR UPDATE is a conservative
approach to prevent deadlocks. It serializes other transactions accessing the
same objects and thus may degrade performance, user applications should
change the setting back to MT DEFAULT ACCESS as soon as practical.

MT MEMORY TRANSPORT. This option allows use of the shared memory
transport rather than tcp or ticots for local access. The connection is first
opened using tcp or ticots, then if shared memory resources are available on
the machine, the connection is reopened in shared memory. The possible
values are:

m MT OFF (default): Does not allow shared memory transport for local
connection. This option cannot be changed when the connection to the
database is open.

m MT ON: Allows shared memory transport for local connection. The
database’s confifguration file MEMORYTRANS parameter must be set to 1
(the default is 0) or this MT ON will have no effect.

148

Matisse C API Reference

€ MT NETWORKTRANS BUFSZ: Sets the size of a network connection buffer.
The values are expressed in kilobytes. Allowed values are 32, 64, 128, and
256. The default value is 64.

€ MT MEMORYTRANS BUFSZ: Sets the size of a memory transport connection
buffer. The values are expressed in kilobytes. Allowed values are 32, 64,
128, and 256. The default value is 64

See also GetConnectionOption (p. 74)
ConnectDatabase (p. 50)
DisconnectDatabase (p. 53)

SetlListElements

Syntax MtSTS MtCtxSetListElements
(MtContext ctx, MtOid object, MtString attributeName,
MtType type,
void* bufList,
MtSize* numElts,
MtSize eltOffset,
MtBoolean discardAfter)
MtSTS MtCtx SetListElements
(MtContext ctx, MtOid object, MtOid attribute,
MtType type,
void* buflist,
MtSize numElts,
MtSize eltOffset,
MtBoolean discardAfter)

Purpose These functions store the bufList content as a subset of the existing list value
of the attribute for the specified object. The subset is stored at
firstEltOffset and is numElts long.

Arguments object INPUT

An object.

attributeNameINPUT
An attribute name.

attributeINPUT
An attribute.

type INPUT
The expected type of the list value. Possible types are
MT DOUBLE_LIST, MT FLOAT LIST, MT NUMERIC LIST,
MT SHORT LIST,MT INTEGER LIST, MT AUDIO, MT IMAGE,
MT_VIDEO, and MT BYTES.

bufListINPUT
The address of a variable allocated by the calling program. The content
if this variable is a subset of the list.

Detailed API Reference 149

Result

Description

numE1tsINPUT

The number of elements of the subset. The maximum list length is
limited to MT_LIST MAX LEN.

eltOffsetINPUT

The offset (or position) of an element in the list value. The subset will
be stored starting at this offset. The first element in the list value has a 0
offset.

Three specific values are allowed for el1toffset:
-MT BEGIN OFFSET,

-MT_ CURRENT_ OFFSET

-MT_END_OFFSET

The MT CURRENT OFFSET parameter allows the user to access “the
next element immediately after the las accessed element”.
discardAfterINPUT

This parameter indicates whether or not the rest of the existing list
immediately after the subset (i.e from the element at offset
firstEltOffset + numElts until the end) should be discarded.

MATISSE SUCCESS
MATISSE ATTEXPECTED

MATISSE CONNLOST

MATISSE DEADLOCKABORT
MATISSE INDEXEDATT

MATISSE INVALLISTOFFSET
MATISSE INVALLISTSIZE
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHATT

MATISSE NOSUCHCLASSATT
MATISSE NOTENOUGHSPACE
MATISSE NOTRANORVERSION
MATISSE NULLPOINTER

MATISSE OBJECTDELETED
MATISSE OBJECTNOTFOUND
MATISSE SCHEMAWITHDAEMONS
MATISSE TRANABORTED

MATISSE TYPEMISMATCH
MATISSE TYPENOTALLOWED
MATISSE WAITTIME

The name of the attribute is not case sensitive. These functions must be called
from within a transaction.

Matisse internally manages an offset for each list. This offset is set to
firstEltOffset + numElts after each call to the MtCtx*GetListElements
or MtCtx*SetListElements functions. It can be used for subsequent accesses
by specifying MT CURRENT OFFSET as value for firstE1tOffset argument.
There is no default offset, therefore, MT CURRENT OFFSET cannot be specified
at the first call. The offset management remains coherent during the same
transaction or version access only.

150

Matisse C API Reference

A NULL value is valid for bufList if numEIts is set to 0. Such a call does
nothing when discardAfteris set to MT FALSE or if firstEltOffset is set
to MT END OFFSET.

The type argument can be different from the existing list type only if
firstEltOffsetissetto 0 and discardAfter issettoMT TRUE. If this
condition is not met, the MATISSE_TYPEMISMATCH error status is returned.

CAUTION: This function does not support entry point or index
management. An error will be returned if the attribute is an
index criteria.

See also GetlListElements (p. 80)
GetValue (p. 95)
SetValue (p. 151)

SetOwnPassword

Syntax MtSTS MtCtxSetOwnPassword
(MtContext ctx, MtString oldPassword,
MtString newPassword)

Purpose This function allows currently connected users to update their password.

Arguments o0ldPasswordINPUT
The current password.
newPasswordINPUT

The new password that will be used upon a subsequent user connection.

Result MATISSE SUCCESS
MATISSE NOCURRENTCONNECTION
MATISSE NOSECURITY
MATISSE INVALPASSWDLEN

Description This function can be called when a database connection is selected.

See also ConnectDatabase (p. 50)

SetValue

Syntax MtSTS MtCtxSetValue
(MtContext ctx, MtOidobject, MtStringattributeName,
MtType type,
void* value,
MtSize rank,

-)

Detailed API Reference 151

MESTS MtCtx SetValue
(MtContext ctx, MtOidobject, MtOid attribute,
MtType type,
void* value,
MtSize rank,

-)

Purpose These functions update the attribute in the object object, with the new value

value.

Arguments object INPUT

An object.

attributeNameINPUT
An attribute name.

attributeINPUT
An attribute object.

type INPUT
The type of the attribute. Possible types are MT BOOLEAN,
MT BOOLEAN LIST,MT CHAR,MT DATE,MT DATE LIST, MT DOUBLE,
MT DOUBLE LIST, MT FLOAT, MT FLOAT, MT FLOAT LIST,
MT INTERVAL, MT INTERVAL LIST, MT NULL, MT SHORT,
MT SHORT LIST, MT INTEGER,MT INTEGER LIST, MT LONG
MT LONG_LIST,MT NUMERIC, MT NUMERIC LIST, MT STRING
MT STRING LIST, MT TIMESTAMP, MT TIMESTAMP LIST, MT BYTE,
MT TEXT, MT VIDEO, MT AUDIO, MT IMAGE and MT BYTES.

value INPUT
The attribute value. value must be a pointer to the value. For the types
MT STRING LIST, value must be an array of pointers (not a two-
dimensional character array).
Null pointers are supported in this array.
value can be NULL for the following types:
- MT STRING
-MT* LIST, MT BYTES, MT AUDIO, MT VIDEO, MT IMAGE

rank INPUT
It must be set to 0 when value is NULL.
When the value is a list (types MT * LIST), the parameter must be set
to 1 when value is not NULL, or set to 0 otherwise.
When the value is of one of the following types, the parameter must be
setto 0: MT BOOLEAN, MT CHAR, MT DATE, MT DOUBLE,
MT FLOAT, MT INTERVAL, MT NULL, MT NUMERIC, MT SHORT,
MT_ INTEGER, MT LONG, MT STRING, MT TEXT, MT TIMESTAMP,
MT BYTE.

Other INPUT arguments:
When the attribute value is a list or an array and value is not NULL, the
argument rank must be followed by the appropriate dimensions.

152 Matisse C API Reference

Result

When the attribute value is a list or a one-dimensional array, there must

be only one value that indicates the size of the array or the number of

elements of the list. The maximum list length is MT LIST MAX LEN.

When the attribute value is a multidimensional array, there must be n

number of values (where n equals rank). If this is the case, each value
indicates the size of the array in the dimension. Refer to the sample code

that follows in the results section below.

MATISSE SUCCESS
MATISSE ATTEXPECTED
MATISSE CLASSEXISTS
MATISSE CONNLOST

MATISSE DEADLOCKABORT
MATISSE FROZENOBJECT
MATISSE INCOMPRANKVALUE
MATISSE INCOMPTYPE
MATISSE INDEXEXISTS
MATISSE INVALATTMODIF2
MATISSE INVALATTMODIF3
MATISSE INVALATTMODIFS
MATISSE INVALATTMODIFG6
MATISSE INVALCARDINALITY
MATISSE INVALDIM

MATISSE INVALINDEXMODIF1
MATISSE INVALMODIF
MATISSE INVALOP

MATISSE INVALRANK
MATISSE INVALSTATUS
MATISSE INVALNAMESIZE
MATISSE INVALSTRINGSIZE
MATISSE INVALTIMESTAMP
MATISSE INVALTIMEINTERVAL
MATISSE INVALTYPE
MATISSE METASCHEMAOBJECT
MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHATT
MATISSE NOSUCHCLASSATT
MATISSE_NOSUCHFUNC
MATISSE NOTRANS

MATISSE NULLPOINTER
MATISSE OBJECTDELETED
MATISSE OBJECTNOTEFOUND
MATISSE PROPERTYEXISTS
MATISSE RECURSIVESETVALUE
MATISSE SELECTOREXISTS
MATISSE SFUNCERRORABORT
MATISSE TRANABORTED
MATISSE USERERROR
MATISSE WAITTIME

Detailed API Reference

153

Description

Example

The value of the attribute is modified, the entry-point is updated if there is an
entry-point function, the entries for the object in any index attached to the class
are updated.

Entry points and the name of attributes are not case sensitive.

These functions can be called either from within a transaction or during a
version access.

NOTE: For the type MT STRING LIST, value must be an array of
pointers (and not a two-dimensional array of characters).

NOTE: with MtctxSetvalue, an attribute cannot be removed (i.e., its
new value corresponds to the default value). When an attribute
is specified, even with the value of type MT_NULL or with a value
equal to the default value defined for this property, it is saved. If
a property value is equal to the property default value, and if the
default value is modified, the property still has the same value. If
the property is not specified, its value corresponds to the new
default value. In order to make an attribute unspecified, use
MtCtxRemoveValue

CAUTION: Under no circumstances should value be set to a variable of
type Mtoid. The definition of the programming type Mtoid
may change in future releases of Matisse. You must always
use relationships to establish links between objects.

CAUTION: You should set the value of an attribute by passing a
variable of a datatype that corresponds to what is passed as
the type argument.

MtOid objoid;

MtOid propOid;

MtInteger value=22;

MtInteger tabl[] = {1, 2, 8, 1, 9};

MtByte tab2[5][3] = {{'l', 'b', '7'},
{r2', ‘e, '8'y,
{r3v, 'a', '9'y,
{rar, re', 'o'y,
{'5', V£', '1'}};

/* Insertion of an integer of type MT INTEGER
* in the object objoOid
* for the attribute propOid
*/
MtCtxSetValue (objOid, propOid, MT INTEGER, &value, 0);

/* Insertion of a one-dimension array of
* integers in the object objOid for the

154

Matisse C API Reference

* attribute propOid.
*/
MtCtxSetValue
(objoOid, propOid, MT INTEGER LIST, tabl, 1, 5);

/* Insertion of a two-dimension array of
* characters in the object objOid for the
* attribute propOid
*/
MtCtxSetValue
(objoOid, propOid,
MT BYTES, tab2, 2, 5, 3);

See also GetListElements (p. 80)
GetValue (p. 95)
GetObjectsFromEntryPoint (p. 83)
OpenEntryPointStream (p. 125)
RemoveValue (p. 145)
GetListElements (p. 80)

SQLAllocStmt
Syntax MtSTS MtCtxSQLAllocStmt (MtContext ctx, MtSQLStmt* stmt)
Arguments stmt OUTPUT

Statement handle.

Result MATISSE SUCCESS

Purpose Allocate a new SQL statement.

SQLExecDirect

Syntax MtSTS MtCtxSQLExecDirect
(MtContext ctx, MtSQLStmt stmt,
MtString stmtStr)

Arguments Parameters must be provided as literal constants.

stmt INPUT

Statement handle.

stmtStr INPUT

The SQL statement to be executed.

Result MATISSE SUCCESS

Detailed API Reference 155

All MATISSE error status results are possible.

Purpose Execute a SQL statement. The statement to be executed is contained in the
stmtStr.

Description A statement is executed in a transaction context or a version (read-only)
context. The context is usually set in the application, if not the SQL execution
automatically starts a version context for read-only statements like SELECT, or a
transaction context for statements performing updates like INSERT, DELETE and
UPDATE.

The following example shows how to allocate a statement, execute it and
retrieve values from the result set.

MtSTS sts;
MtSQLStmt stmt;
MtSize size;
MtType type;

char name[32];

sts = MtCtxSQLAllocStmt (&stmt);
sts = MtCtxSQLExecDirect (stmt,
"SELECT FirstName FROM person");

if (MtFailure(sts)) {
printf ("Error!! code = %d, message = %s\n", sts,
MtCtxError());

return ...;

/* open a row stream on the result set */

sts = MtCtxSQLOpenStream (&stream, stmt);

/* Get the type and value for the first column */
MtCtxSQLNext (stream);
size = 32;

MtCtxSQLGetRowValue (stream, 1, &type, name, &size);

sts = MtCtxCloseStream (stream);

sts = MtCtxSQLFreeStmt (stmt);

The next example shows how to use the REF () function within the select list of
a SELECT statement to return object identifiers, and then directly access the
attributes and relationships from the objects.

156 Matisse C API Reference

MtSTS sts;
MtSQLStmt stmt;
MtSize size;
MtType type;
MtOid obj;

char name[32];

sts MtCtxSQLAllocStmt (&stmt);

FROM person

sts = MtCtxSQLExecDirect (stmt, "SELECT REF (p)
p");
if (MtFailure(sts)) {
printf ("Error!! code = %d, message = %s\n", sts,
MtCtxError());
return ...;
}
sts = MtSQLOpenStream (&stream, stmt);
MtSQLNext () ;
while (MtSQLNext (stream) == MATISSE SUCCESS) {
/* first get the object id */
size = sizeof (obj);
MtSQLGetRowValue (stream, 1, (void*)&obj, &size);

/* access the attributes from the object id */

size = 32;

MtGetValue (obj, “FirstName”, &type,

sts = MtCloseStream (stream);

MtSQLFreeStmt (stmt) ;

sts

name,

0,

&size,

0);

SQLFreeStmt
Syntax MtSTS MtCtxSQLFreeStmt (MtContext ctx, MtSQLStmt stmt)
Arguments stmt INPUT
Statement handle.
Result MATISSE SUCCESS
MATISSE INVALSTMT
Detailed API Reference 157

Purpose Free a SQL statement.

Before freeing a SQL statement, you must make sure that there is no currently
open stream on the result set for this statement.

SQLGetColumnInfo

Syntax MtSTS MtCtxSQLGetColumnInfo
(MtContext ctx, MtSQLStmt stmt,
MtSize colNum,
MtType* coltype,
MtString colname,
MtSize* sz)

Arguments stmt INPUT

Statement handle.

colNum INPUT

Column number, starting at 1.

coltype OUTPUT

The column type.

colname OUPUT

The column name.

sz INPUT/OUTPUT
Column name length.

Result MATISSE SUCCESS
MATISSE INVALARG

Purpose This function returns the column type and the column name for a given column.
It can be used after successful completion of a SELECT statement.

SQLGetParamDimensions

MtSTS MtCtxSQLGetParamDimensions
(MtContext ctx, MtSQLStmt stmt,
MtSize paramNumber,

MtSize* rank,

MtSize dimensions)

Arguments stmt INPUT

SQL statement.

158 Matisse C API Reference

Result

Purpose

paramNumber INPUT
Index of parameter, starting from 1 or MTSQL. RETVALUE for the return value.
Currently only MTSQL RETVALUE is supported.

rank OUTPUT

Number of dimensions.

dimensions OUTPUT

Dimensions.

MATISSE SUCCESS
MATISSE INVALARG

Get rank and dimensions for the list and array values. Caller should pass an
array of 8 dimensions. See also MtCtxGetValue and MtCtxGetDimension in
the MATISSE C API Reference for details of how to handle list and array
values.

This function can be called after successful completion of a CALL statement or
a block statement.

SQLGetParamListElements

Arguments

MtSTS MtCtxSQLGetParamListElements
(MtContext ctx, MtSQLStmt stmt,
MtSize paramNumber,

MtType type,

void* buf,

MtSize* buf size,

MtSize firstEltOffset)
stmt INPUT

Statement handle.

paramNumber INPUT

Index of parameter, starting from 1 or MTSQL RETVALUE for the return value.
Currently only MTSQL RETVALUE is supported.

type OUTPUT

Type of the value. Can be set to NULL.

buf OUTPUT

Space to copy the value. Can be set to NULL.

buf size INPUT/OUTPUT

Detailed API Reference

159

Buffer size. MtCtxSQLGetParamValue () returns NOTENOUGHSPACE error if
there is not enough space to copy data.

firstEltOffset INPUT
Offset of the first element of the list to be copied, starting at 0.

Result MATISSE SUCCESS
MATISSE INVALARG

Purpose Retrieve a portion of the list value for this parameter. The subset begins at
firstEltOffset. The interface is similar to
MtCtxSQLGetRowListElements.

This function can be called after successful completion of a CALL statement.

SQLGetParamValue

MtSTS MtCtxSQLGetParamValue
(MtContext ctx, MtSQLStmt stmt,
MtSize paramNumber,

MtType* type,
void* value,

MtSize* size)

MtSTS MtCtxSQLMGetParamValue
(MtContext ctx, MtSQLStmt stmt,
MtSize paramNumber,
MtType* type,
void** value,
MtSize* size)
Arguments stmt INPUT

Statement handle.

paramNumber INPUT
Index of parameter, starting from 1 or MTSQL. RETVALUE for the return value.
Currently only MTSQL RETVALUE is supported.

type OUTPUT

Type of the value. Can be set to NULL.

value OUTPUT

Space to copy the value. Can be set to NULL.

size INPUT/OUTPUT (using MtCtxSQLGetParamValue)
size OUTPUT (using MtCtxSQLMGetParamValue)

160 Matisse C API Reference

Result

Purpose

Description

Buffer size. MtCtxSQLGetParamValue () returns NOTENOUGHSPACE error if
there is not enough space to copy data.

MATISSE_ SUCCESS
MATISSE INVALARG

Get the return value of the SQL method invoked. The interface is similar to
MtCtxSQLGetRowValue.

This function can be called after successful completion of a CALL statement or
a block statement.

The following example shows how to retrieve the value returned by a CALL
statement.

MtSTS sts;
MtSQLStmt stmt;
MtInteger value;
MtType type;

MtSize size = sizeof (value);
sts = MtCtxSQLAllocStmt (&stmt) ;
/* call the static method 'bonus' on class 'employee' */
sts = MtCtxSQLExecDirect (stmt,
"CALL employee.bonus (12, 'Smith'")");
/* Get the return value */
sts = MtCtxSQLGetParamValue (stmt, MTSQL RETVALUE, &type,

(void*) &value, &size);

sts = MtCtxSQLFreeStmt (stmt);

SQLGetRowListElements

Syntax

Arguments

MtSTS MtCtxSQLGetRowListElements
(MtContext ctx, MtStream stream,
MtSize colNum,

MtType colType,

void* bufList,

MtSize* numElts,
MtSize firstEItOffset)

stream INPUT

Detailed API Reference

161

Result

Purpose

A stream opened on a SELECT statement after successful execution.

colNum INPUT

Column number, starting at 1.

colType INPUT

The column type. Can be set to one of the media types (MT_AUDIO, MT IMAGE,
MT VIDEO) or MT BYTES.

bufList OUTPUT

This argument contains the address of a buffer allocated by the calling program.
The subset retrieved is copied in this buffer.

numElts INPUT/OUTPUT

In input, this parameter indicates the maximum number of elements to be read
for the subset. In output it indicates the actual number of elements read.

firstEltOffset INPUT

This parameter indicates the offset (or position) of the first element of the
subset to be retrieved. The first element of the stored list has the offset 0.

Two specific values are allowed for firstEltOffset:

€ MT BEGIN OFFSET
€ MT CURRENT OFFSET

MT CURRENT OFFSET means “the next element immediately after the last
accessed element”.

MATISSE SUCCESS

MATISSE INVALARG
MATISSE INVALLISTOFFSET
MATISSE NOTENOUGHSPACE
MATISSE NULLPOINTER
MATISSE TYPEMISMATCH
MATISSE TYPENOTALLOWED

This function allows reading of a large attribute chunk by chunk directly from
the server, without internal caching in the MATISSE client.

When a program calls MtCtxSQLGetRowListElements, MATISSE does not
allocate any memory space. This function copies the subset, according to
numElts, into a buffer allocated by the calling program.

MATISSE internally manages an offset for each list value. This offset is set to
firstEltOffset + numElts after every call to the

MtCtxSQLGetRowListElements function. The offset can be used for further
access by specifying MT CURRENT OFFSET as value for the firstEltOffset

162

Matisse C API Reference

argument. There is no default offset so MT CURRENT OFFSET cannot be
specified at the first call. The offset management remains coherent only within
the same transaction or version access.

Note that you need to call MtCtxSQLNext () before calling this function.

SQLGetRowValue

Syntax MtSTS MtCtxSQLGetRowValue
(MtContext ctx, MtStream stream,
MtSize colNum,
MtType* colType,
void* value,
MtSize* size)

MtSTS MtCtxSQLMGetRowValue
(MtContext ctx, MtStream stream,
MtSize colNum,

MtType* colType,
void** value,
MtSize* size)

Arguments stream INPUT

A stream opened on a successfully executed SELECT statement.

colNum INPUT

Column number, starting at 1.

colType OUTPUT

The column type. Can be set to NULL, in which case the function does not
return the type of the column.

value OUTPUT

For the function MtCtxGetRowValue that does not allocate memory—this
argument is the address of a buffer allocated in the calling program. After the
function is called, the value retrieved is copied in this buffer.

For the function MtCtxMGetRowValue that allocates memory—this argument is
the address of a pointer variable declared in the calling program. After this
function is called, the pointer contains the address of a buffer that contains the
value retrieved by the function.

Can be set to NULL, in which case the function does not return the value of the
attribute.

size INPUT/OUTPUT

Detailed API Reference 163

In input, only for the function MtCtxGetRowValue, size corresponds to the
size in bytes of the buffer provided by the user. In output for both functions,
size corresponds to the size of the buffer that contains the value that is
returned.

Can be set to NULL in which case the function does not return the size. In this
case, the argument value must also be set to NULL.

In output, for all of the functions, size corresponds to the size of the value that
is returned. When the stored value is NULL, then size is equal to 0.

Result MATISSE SUCCESS
MATISSE INVALARG
MATISSE NOTENOUGHSPACE
MATISSE NULLPOINTER

Purpose When a program calls MtCtxSQLGetRowValue, MATISSE does not allocate
any memory space. This function copies the value into a buffer allocated by the
calling program.

It is preferable to use this function to retrieve values whose size is fixed, i.c.,
for the values of type MT BOOLEAN, MT BYTE, MT SHORT, MT INTEGER,

MT LONG MT FLOAT, MT DOUBLE, MT NUMERIC, MT CHAR, MT DATE,

MT TIMESTAMP, MT TIME INTERVAL. In these cases, this function’s memory
management is better than MtCtxSQLMGetRowValue’s.

When a program calls MtCtxSQLMGetRowValue, MATISSE allocates sufficient
space for the value. The program must declare a variable of the appropriate type
and then pass the address of this variable to the function. When the data is no
longer used, you have to free the space, using the MtMFree function.

Note that you need to call MtCtxSQLNext () before calling these functions.

SQLGetStmtInfo
Syntax MtSTS MtCtxSQLGetStmtInfo
(MtContext ctx, MtSQLStmt stmt,
MtSQLStmtAttr stmtAttr,
void* value,
MtSize* size)
Arguments stmt INPUT

Statement handle.

stmtAttr INPUT

Statement attributes to retrieve.

value OUTPUT

164

Matisse C API Reference

String containing the attribute value.

size INPUT/OUTPUT

In input, size in bytes of the value specified by the user. In output, size of the
value that is returned.

Result

MATISSE SUCCESS

MATISSE INVALARG

Purpose

information about the statement.

Table 3.1
MtSQLStmtAttr
MTSQL_STMT_OPTION
MTSQL_STMT_VALUE
MTSQL_STMT_NUMOBJECTS

MTSQL_STMT_NUMQUALIFIED

MTSQL_STMT_ERRPOSITION
MTSQL_STMT_ERRLINE
MTSQL_STMT_READONLY

MTSQL_STMT_VERSION

MTSQL_STMT_PRIORITY
MTSQL_STMT_SELECTION

MTSQL_STMT_CLASS
MTSQL_STMT_SUPERCLASS
MTSQL_STMT_ATTRIBUTE
MTSQL_STMT_RELATIONSHIP
MTSQL_STMT_INDEX
MTSQL_STMT_ENTRYPOINT

SQL Statement Attributes

SQL Statement
SET OPTION
SET OPTION

SELECT, INSERT, UPDATE,
DELETE

SELECT

any
any

SET TRANSACTION

SET TRANSACTION,
COMMIT

SET TRANSACTION

DROP SELECTION,
SELECT INTO

CREATE, ALTER, DROP
CREATE, ALTER, DROP
CREATE, ALTER, DROP
CREATE, ALTER, DROP
CREATE, DROP
CREATE, DROP

This function can be called after execution of a SQL statement to obtain some

description
set option
value for set option

Number of objects returned or
updated

Number of objects qualified,
not affected by SET
MAXOBJECTS

Syntax error position
Syntax error line

Start version or transaction
access

Version name

Transaction priority

Selection name

Class name
Superclass name
Attribute name
Relationship name
Index name

Entry point dictionary name

Detailed API Reference

165

SQLGetStmtType

Syntax MtSTS MtCtxSQLGetStmtType
(MtContext ctx, MtSQLStmt stmt,
MtSQLStmtType* stmtType)

Arguments stmt INPUT

Statement handle.

stmtType OUTPUT
Statement Type. See table.

Result MATISSE SUCCESS
MATISSE INVALARG

Purpose Get the statement type. The statement type of a newly allocated statement is
MTSQL ALLOCATED, after successful execution it indicates the type of SQL
statement that has been executed.

166 Matisse C API Reference

SQLNext

Syntax

Arguments

Result

Purpose

Table 3.2 SQL Statement Types

MtSQLStmtType
MTSQL_ALLOCATED
MTSQL_SELECT

description
not yet executed

execute select

MTSQL_SET_TRANSACTION | set transaction

MTSQL_SET_OPTION

set option

MTSQL_DROP_SELECTION drop selection

MTSQL_COMMIT
MTSQL_ROLLBACK
MTSQL_UPDATE
MTSQL_DELETE
MTSQL_INSERT
MTSQL_ALTER_ADD
MTSQL_ALTER_DROP
MTSQL_ALTER_ALTER
MTSQL_DROP
MTSQL_CREATE
MTSQL_METHOD
MTSQL_PROCEDURE
MTSQL_ERROR

commit

rollback

execute update
execute delete
execute insert

alter

alter

alter

drop

create class, method..
execute call method
execute block statement

syntax or execution error

MtSTS MtCtxSQLNext

(MtContext ctx,

streamINPUT

MtStream stream)

A stream opened on a SELECT statement after successful execution.

MATISSE SUCCESS

MATISSE ENDOFSTREAM

MATISSE INVALARG

Fetch the next row from a result set produced by the successful execution of an
SQL seLECT statement. The values for the columns of the current row can then
be retrieved with the functions MtCtxSQL*GetRowValue and
MtCtxSQLGetRowListElements.

Detailed API Reference

167

SQLNumResultCols

Syntax MtSTS MtCtxSQLNumResultCols
(MtContext ctx, MtSQLStmt stmt,

MtSize* numcols)

Arguments stmt INPUT

Statement handle.

numcols OUTPUT

Number of columns in the result set.

Purpose Return the number of columns from the result set produced by the successful
execution of a SELECT statement.

SQLOpenStream
Syntax MtSTS MtCtxSQLOpenStream
(MtContext ctx, MtStream* stream.
MtSQLStmt stmt)
Arguments stream OUTPUT

SQL projection stream.

stmt INPUT

Statement handle.

Purpose Open a stream on a successfully executed SELECT statement. The stream can
then be used with MtSQLNext () to visit each row in SQL projection.

Note: MtNextObject () cannot be used with this type of stream.

StartTransaction

Syntax MESTS MtCtxStartTransaction
(MtContext ctx, MtTranPriority priority)

Purpose This function starts a transaction.

Arguments priorityINPUT
The value used by the server to solve access conflicts (in case of
deadlock). The value must fall between MT MIN TRAN PRIORITY
(lowest priority) and MT MAX TRAN PRIORITY (highest priority).

168 Matisse C API Reference

Result

Description

See also

MATISSE_ SUCCESS
MATISSE INVALOP

MATISSE INVALPRIO

MATISSE NESTEDTRANS

MATISSE NOCURRENTCONNECTION
MATISSE STREAMCLOSED
MATISSE TRANSDISABLED
MATISSE TRANSNOTALLOWED
MATISSE VERSIONMODE

A transaction is the smallest granularity operation on a database. It is atomic:
all the elements of the transaction either succeed or fail. If they fail, the
transaction is aborted. An abort may be initiated by the server or by the user.

Within a transaction, access to the database may be blocked for various reasons:

@ If competing transactions mutually prohibit access (deadlock), one of the
transactions is aborted (depending on transaction priority) or if the cache is
flushed;

€ If the wait-time is exceeded or if a Matisse error occurs, an error status is
returned.

The cache is flushed upon exiting a transaction: all objects read into client
memory during the transaction are deleted and all the locks on these objects are
released.

A transaction is relative to a single connection only.

The number of locks that are granted is proportional to the number of objects
that a transaction modifies. Therefore, transactions that modify objects should
be as short as possible to avoid affecting other users.

AbortTransaction (p. 42)
CommitTransaction (p. 48)

StartVersionAccess

Syntax

Purpose

Arguments

Result

MtSTS MtCtxStartVersionAccess
(MtContext ctx, MtString versionName)

This function starts a sequence for a version access.

versionNameINPUT
The identifier of an instance view of the database (defined on a previous
MtCtxCommitTransaction) To access the current version, this
argument should be set to NULL.

MATISSE SUCCESS
MATISSE INVALOP

Detailed API Reference

169

MATISSE NESTEDVERSION

MATISSE NOCURRENTCONNECTION
MATISSE NOSUCHVERSION

MATISSE STREAMCLOSED

MATISSE TRANSOPENED

Description Historical versions are stamped by a string specific to each version.

Within the scope of an MtCtxStartVersionAccess -
MtCtxEndVersionAccess, you can access either a version of the database that
has been previously saved or the current version. The latter option will allow
you to access the most recent version of the database objects without having to
enter a transaction context.

In order to access a specific version, specify the string that is returned by
MtCtxCommitTransaction as an argument of MtCtxStartVersionAccess.

Within the scope of MtCtxStartVersionAccess -
MtCtxEndVersionAccess, it is not permitted to perform object modifications.

This function cannot be called within a transaction.

See also EndVersionAccess (p. 54)
OpenVersionStream (p. 140)

Success
Syntax int MtSuccess (MtSTS status)

Purpose This macro indicates whether or not a Matisse function has executed
successfully.

Arguments status INPUT
The status returned by a Matisse function.

Result 0 if the status corresponds to a failure; a non-null integer otherwise.

See also Failure (p. 56)

TimestampAdd

Syntax MtSTS MtTimestampAdd
(MtTimestamp *result,

MtTimestamp *time
MtInterval *interval)

Purpose This function adds an Mt Interval value to an MtTimestamp value.

170 Matisse C API Reference

Arguments result OUTPUT
Result value.
time INPUT
Timestamp value.
intervalINPUT

Interval value.

Result MATISSE SUCCESS
MATISSE NULLPOINTER
MATISSE INVALID TIMESTAMP

See also TimestampDiff (p. 172)
TimestampSubtract (p. 174)

TimestampBuild

Syntax MtSTS MtTimestampBuild
(MtTimestamp *result

MtString buffer,
MtTimeZone timeZone)

Purpose This function builds an Mt Timestamp value from a text representation.

Arguments result OUTPUT

Timestamp result value.

bufferINPUT
A character string representing a time in the following format:
YYYY-MM-DD HH-mm-SS[:uuuuuu]

timeZone INPUT
Time zone for the string representation, can be either
MT LOCAL TIMESTAMP Oor MT UNIVERSAL TIMESTAMP.

Result MATISSE SUCCESS
MATISSE NULLPOINTER
MATISSE INVALID TIMESTAMP

Description The MtTimestamp structure fields are extracted if buffer is in the right format
and represents a valid time.
For example:

MtTimestampBuild ("1997-02-30 20:00:33", & time);

will return MT _INVALID TIMESTAMP because february 30 does not exist.

Detailed API Reference 171

If the MT_LOCAL_TIMESTAMP time zone is specified, the value is converted
from the local time zone to universal time, which is also known as UTC. With
the MT UNIVERSAL TIMESTAMP time zone no time conversion is applied.

To ensure the portability of applications across different time zones, all time
values should be stored in universal time.

See also TimestampPrint (p. 173)

TimestampCompare

Syntax MtSTS MtTimestampCompare
(MtInteger *result,
MtTimestamp *timel,

MtTimestamp *timel2)

Purpose This function compares the first Mt Timestamp argument to the second
MtTimestamp argument.

Arguments result OUTPUT
Comparison result.
timel INPUT
A timestamp value.
time2 INPUT

A timestamp value.

Result MATISSE SUCCESS
MATISSE NULLPOINTER
MATISSE INVALID TIMESTAMP

Description Returns an integer greater than, equal to or less than 0 if the first argument is
greater than, equal to, or less than the second one respectively.

TimestampDiff

Syntax MtSTS MtTimestampDiff
(MtInterval *result,

MtTimestamp *timel,
MtTimestamp *time?2)

Purpose This function subtracts the second Mt Timestamp argument from the first
MtTimestamp argument.

Arguments result OUTPUT

Interval result value.

172 Matisse C API Reference

timel INPUT
A timestamp value.
time2 INPUT

A timestamp value.

Result MATISSE SUCCESS
MATISSE NULLPOINTER
MATISSE INVALID TIMESTAMP

Description Returns an Mt Interval value representing the time interval between the
timel and time2 arguments.

See also TimestampAdd (p. 170)
TimestampSubtract (p. 174)

TimestampGetCurrent
Syntax MtSTS MtTimestampGetCurrent (MtTimestamp *currentTime)

Purpose This functions returns the current timestamp.

Arguments currentTimeOUTPUT

The current timestamp.

Result MATISSE SUCCESS
MATISSE NULLPOINTER

Descrtiption Returns a Mt Timestamp value representing the current UTC timestamp.

See also CurrentDate (p. 53)

TimestampPrint

Syntax MtSTS MtTimestampPrint
(MtString buffer,
MtSize *bufferSize,
MtString format,
MtTimeStamp *time,

MtTimeZone timeZone)

Purpose This function outputs time according to format into the character string pointed
by buffer.

Arguments time INPUT

The MtTimestamp value to print.

Detailed API Reference 173

formatINPUT
A character string containing directives to output the
different time fields; possible directives are:

%Y year, including century (for example, 1988)

oe

year within century (00..99)

os]

month, using full month names

o

month, using abbreviated month names
month number (01..12)

day of month (01..31)

hour (00..23)

minute (00..59)

seconds (00..59)

microseconds (000000..999999)

same as %
buffer OUTPUT

o 3

c n X

00 o0 o0 0 P d° o° o° oo
jus)

oe

A character string into which the time desired time representation will
be placed.

bufferSizeINPUT
An integer indicating the maximum number of character that can be
placed into buffer.
timeZone INPUT
Time zone for the string representation, can be either
MT LOCAL TIMESTAMP or MT UNIVERSAL TIMESTAMP.

Result MATISSE SUCCESS
MATISSE NULLPOINTER
MATISSE INVALID TIMESTAMP

Description The timestamp value is assumed to be a universal time value.

If the MT LOCAL TIMESTAMP time zone is specified, the character string value
is converted from universal time to the local time zone. With the
MT_ UNIVERSAL TIMESTAMP time zone no time conversion is applied.

To ensure the portability of applications across different time zones, all time
values should be stored in universal time.

See also TimestampGetCurrent (p. 173)

TimestampSubtract

Syntax MtSTS MtTimestampSubtract
(MtTimestamp *result,

MtTimestamp *time
MtInterval *interval)

Purpose This function subtracts an Mt Interval value to a MtTimestamp value.

174 Matisse C API Reference

Arguments result OUTPUT
Result value.
time INPUT
Timestamp value.
intervalINPUT

Interval value.

Result MATISSE SUCCESS
MATISSE NULLPOINTER
MATISSE INVALID TIMESTAMP

See also TimestampAdd (p. 170)
TimestampDiff (p. 172)

Detailed API Reference 175

4 Error Code Reference

This section lists the errors that may result from the use of the Object Oriented
Services.

ALREADYSUCC
successor object already exists

This error occurs when one of the following functions is called:

MtCtxAddNumSuccessors
MtCtx AddNumSuccessors
MtCtxAddSuccessor
MtCtx AddSuccessor
MtCtxAddSuccessors
MtCtx AddSuccessors

and when one of the successors to be added is already present in the object for
the defined relationship.

AMBIGUOUS IDENTIFIER

In a SQL statement, the same identifier is used to specify a class and a selection
or a property and a selection.

ARG _OUTOFBOUND

A numeric argument for a SQL function is out of bounds.

ARRAYTOOSMALL
array too small. x elements needed

This error occurs when one of the following functions is called:
MtCtx GetAddedSuccessors

MtCtx GetAllAttributes

MtCtx GetAllInverseRelationships

MtCtx GetAllRelationships

MtCtx GetAllSublasses

MtCtx GetAllSuperclasses

MtCtx GetObjectsFromEntryPoint

MtCtx GetPredecessors

MtCtx GetRemovedSuccessors

176 Matisse C API Reference

Solution

ATTEXPECTED

CLASSEXISTS

MtCtx GetSuccessors
MtCtxGetAddedSuccessors
MtCtxGetAllAttributes
MtCtxGetAllInverseRelationships
MtCtxGetAllRelationships
MtCtxGetAllSubclasses
MtCtxGetAllSuperclasses
MtCtxGetObjectsFromEntryPoint
MtCtxGetPredecessors
MtCtxGetRemovedSuccessors
MtCtxGetSuccessors

and when the size of the array specified by the user to position the objects is
too small. This size is specified in the first argument.

Set a higher value to the first argument of the function.

object is not an attribute

This error occurs when calling one of the following functions:

MtCtx GetDimension

MtCtx GetObjectsFromEntryPoint
MtCtx GetValue

MtCtx LockObjectsFromEntryPoint
MT MGetObjectsFromEntryPoint
MtCtx MGetValue

MtCtx OpenEntryPointStream
MtCtx RemoveValue

MtCtx SetValue

and when the specified identifier is not an attribute identifier.

"class name" is already the name of the class class

This error occurs in MT _DATA DEFINITION connection mode exclusively, when
calling one of the following functions:

- MtCtxSetValue
- MtCtx SetValue

This error indicates that the class external name is already that of a class. Two
different classes cannot share the same name, so the error is returned and the
transaction aborted.

Error Code Reference

177

Solutions

CLASSEXPECTED

CLASS NAME USED

CLASSWITHINSTANCES

Solutions

CONNECTREJECT

Change the class name.

object is not a class

This error occurs when access functions to Matisse objects are called, with the
0Oid of a Matisse object that is not of the class type being specified as argument
(the Oid of a Matisse object of some other type is specified instead).

This error can occur when calling one of the following functions:

MtCtx CreateObject

MtCtx GetAllAttributes

MtCtx GetAllInverseRelationships
MtCtx GetAllRelationships

MtCtx GetAllSubclasses

MtCtx GetAllSuperclasses

MtCtx GetInstancesNumber

MtCtx GetObjectsFromEntryPoint
MtCtx IsInstanceOf

MtCtx LockObjectsFromEntryPoint
MtCtx MGetAllAttributes

MtCtx MGetAllInverseRelationships
MtCtx MGetAllRelationships

MtCtx MGetAllSubclasses

MtCtx MGetAllSuperclasses

MtCtx MGetObjectsFromEntryPoint
MtCtx OpenEntryPointStream

MtCtx OpenInstancesStream

In a SQL statement, the identifier in the INTO clause is the name of a class.

you cannot remove Class which has instances

This error occurs in MT DATA DEFINITION connection mode exclusively when
calling the function MtCtxRemoveObject.

It occurs when the user tries to remove a class which has instances (either the
class's own instances, or the instances of the class's subclass). The transaction is
aborted.

Remove the instances.

Connection rejected by database database on host host

178

Matisse C API Reference

CONNLOST

Solutions

CONNTIMEOUT

Solution

CONSTANT TOO_LONG

DBALREADYINITED

Solutions

DBNAMETOOLONG

Solution

DBINWRONGSTATE

This error can occur with the command mt_init database, or when calling
the function MtCtxConnectDatabase.

You probably want to connect to a stand-alone server from a remote host.

Connection with database database on host host has been lost

This error can occur during any server access.
Try to reconnect.

Check if the server machine is OK.

Database database on host host is not responding

This error can occur with the command mt_init database, or when calling
the function MtCtxConnectDatabase. This error indicates that the host did not
respond in the allotted time.

Try again. And if you still have the same problem, determine whether or not the
server process is sleeping.

In a SQL statement, a constant is too long.

database is already initialized

This error can occur when executing the command mt_init database.

It occurs when the database has already been initialized and the user tries to
initialize it again.

Check your database name.

Database name should not exceed 11 characters
This error occurs when the database name specified for the connection request

is greater than 11 characters.

Use a shorter name for the database.

Database "database" on host "host" is not in state INITED

This error occurs when you try to disconnect from a database that is not
connected or is not in the current context.

Error Code Reference

179

Solution

DBNOTINIT

Solution

DBNOTOPENED

Solution

DEADLOCK

Solutions

DEADLOCKABORT

Solution

DIVISION BY ZERO

EMPTYSTRING

Check if the application has connected to the database. If it has connected to
the database, check the current context.

database "database" on host "host" is not initialized

This error occurs when the MtCtxConnectDatabase function is called with no

meta-schema having been previously defined on the database.

Use the command mt_init database to write the meta-schema in the
database.

database "database" on host "host" is not opened

This error occurs when the MtCtxDisconnectDatabase.

Check whether or not the database has been closed.

locks not acquired due to deadlock

This error occurs with a lock function exclusively. It indicates that no lock has
been set, otherwise a deadlock would have been generated. The transaction is
not aborted.

Repeat the operation again, until no error is returned (if the deadlock situation
still exists, the error is systematically returned).

Either commit or abort the transaction (depending on the context) to escape the
deadlock and restart the whole operation.

With the system engineer, find who has set locks on the objects.

transaction aborted due to deadlock

This error can occur when an object is accessed (through a read or modification
function). It indicates there has been a deadlock and the transaction has been
aborted.

Start a new transaction.

In a SQL statement, the evaluation of an expression leads to a division by zero.

attribute's value of object object should be a non empty
string

180

Matisse C API Reference

ENDOFSTREAM

end of stream - all values enumerated

This error, which can occur when there is a stream enumeration (functions
MtCtxNextObject, MtCtxNextProperty and MtCtxNextTime), indicates
that the enumeration is over: all the elements of the stream have been returned.

Solution Close the stream.
EXCEEDSLIMIT
Number of elements numObjects exceeds limit of maxObjects
This error occurs when calling one of the following functions:
MtCtx CreateNumObjects
MtCtxCreateNumObjects
MtCtxLoadNumObjects
MtCtxLoadObjects
MtCtxLoadObjects
MtCtxLockNumObjects
MtCtxLockObjects
when the number of objects specified is greater than the limit returned by
MtCtxGetConfigurationInfo and when the type argument is set to the
MT MAX BUFFERED OBJECTS.
Solution: Call the function as many times as needed with numObjects less than or equal
to the limit value.
FAILURE
This indicates an internal error that occurs during SQL statement resolution.
FROZENOBJECT
object is frozen and cannot be modified
This error occurs in MT DATA MODIFICATION connection mode exclusively,
when trying to modify a schema object (any schema object is frozen in order to
prevent modifications on them).
Solution Use DS to modify a schema object.
INCOMPCRITERIANUMBER

Criteria number, nb, is not compatible with criteria order’s
value or criteria size’s value

This error can occur in MT _DATA DEFINITION connection mode with

MtCtxCommitTransaction.

Error Code Reference

181

INCOMPCRITERIASIZE

INCOMPOP

INCOMPRANKVALUE

INCOMPTYPE

Solutions

INCOMPVERSION

Solutions

INDEXEXISTS

Criteria size size, is not compatible with criteria type
type

This error can occur in MT_DATA DEFINITION connection mode with

MtCtxCommitTransaction.

incompatible operation with type type

This error occurs when one of the two following functions is called:

MtCtxGetDimension

MtCtx GetDimension

when the data (on which you are requesting dimensional information) is neither
an array nor a list.

rank and value are not compatible

This error occurs during a MtCtxSetValue or MtCtx SetValue, when the
rank specified by the user is incompatible with the data type (for example, a
rank is declared as equal to 2 for a data of type MT CHAR).

Type type incompatible type with make-entry-function

This error is returned by the "make-entry" method when the type of the value
specified as argument is not one of the following: MT DATE, MT NULL,
MT SHORT, MT INTEGER, MT STRING, MT TIMESTAMP, MT BYTE.

"make-entry" is the default entry point creation function. It is called when an
attribute value is modified in an object, when "make-entry" is the entry point
creation function of the attribute.

Modify the type of the attribute.

database version is incompatible

This error occurs during the connection to a base, or when calling
MtCtxConnectDatabase, if the base has been generated with a Matisse
version older than the version currently running.

Use an older Matisse version in order to work with the desired base.

Upgrade the base, so that it can run with the desired Matisse version.

"index name" is already the name of the index index.

182

Matisse C API Reference

INDEXEXPECTED

INDEXEDATT

INDEXINCREATION

INTERNALERROR

Solution

INVALARG

INVALATTMODIF1

This error can occur in MT _DATA DEFINITION connection mode with
MtCtxSetValue, MtCtx SetValue

object is not an index

This error can occur with MtCtxOpenIndexEntriesStream,
MtCtx OpenIndexEntriesStream, MtCtxOpenIndexObjectsStream,
MtCtx OpenIndexObjectsStream, MtCtxGetIndexInfo.

Attribute attribute is an index criterion or has a make
entry function

This error can occur with MtCtxSetListElements,
MtCtx SetListElements.

Index indexName is being created

This error can occur with MtCtxGetIndexInfo, MtCtx GetIndexInfo,
MtCtxMGetIndexInfo, MtCtx MGetIndexInfo.

This error should never happen but it might occur after any call to a Matisse
function.

Contact your Matisse Software support center.

invalid number of arguments (numArgs)

This error can occur when any of the modification functions are called.

you cannot reduce attribute's value of Attribute which is an
attribute of a class which has instances

This error occurs in MT_DATA DEFINITION connection mode exclusively, when
calling:
MtCtxCommitTransaction

This error indicates that the number of types that are allowed for a property's
attribute has been modified during the transaction, but there is at least one class
that has instances and that is associated with this attribute.

Because the type associated with the attribute for an instance may be one of the
deleted types, it is impossible to restrict the number of types.

Error Code Reference

183

Solutions

INVALATTMODIF2

Solutions

INVALATTMODIF6

INVALATTTYPE

Solution

INVALBOOL

INVALCARDINALITY

Re-specify the accepted type that has been removed.

Cancel the transaction.

attribute's value in Attribute must be a list of different
MtType elements

This error occurs in MT_DATA DEFINITION connection mode exclusively, when
calling:

MtCtxCommitTransaction
One of the types specified in the attribute is not a Matisse type (refer to where
all Matisse data types are listed).
Check the possible values.

Cancel the transaction.

You cannot modify attribute in object. object is a criterion
of an index that has been created in a previous transaction.

This error can occur in MT _DATA DEFINITION connection mode with
MtCtxSetValue, MtCtx SetValue

attribute's value of object object has an invalid type
This error occurs in MT DATA DEFINITION connection mode exclusively, when
calling:

MtCtxCommitTransaction
and when the type of the new value does not belong to the list of authorized

types for the attribute.

Cancel the transaction.

Not a valid MtBoolean value.

This error can occur when calling MtCtxSetValue, MtCtx SetValue when
the given value is different from MT_TRUE or MT FALSE.

<attribute cardinality>'s value of relationship is invalid

This error can occur in MT DATA DEFINITION connection mode exclusively,
when calling MtCtxCommitTransaction.

184

Matisse C API Reference

INVALCLASSMODIF4

Solutions

INVALCLASSMODIFS

Solutions

INVALCLASSMODIF9

The cardinality attached to the relationship is invalid; it must respect the
following format:

€ (0 -1):the object can have any number of successors, or none;

€ (1 -1): atleast one successor is required (no upper limit);

€ (1 6): the first number is the minimum number of successors. The second
number is the maximum number of successors;

€ (1 1):itis the exact number of successors which must have the attribute
and this attribute then becomes required;

By default, the cardinality is (0 -1).

you cannot remove property from Class which has instances
This error can occur in MT DATA DEFINITION connection mode exclusively,

when calling MtCtxCommitTransaction.

You cannot remove an attribute or a relationship from a class that has instances,
unless the attribute or the relationship is also inherited from a superclass or if
the attribute or relationship has been destroyed.

Put back all the properties that have been removed during the transaction.

Cancel the transaction.

you cannot add relationship (whose minimal cardinality is
minimum-cardinality) to Class which has instances

This error can occur in MT _DATA DEFINITION connection mode exclusively,
when calling MtCtxCommitTransaction.

You cannot add a relationship which has a minimal cardinality to a class which
has instances.

Set the minimal cardinality of the added relationship to 0.
Remove the relationship from the class.

Cancel the transaction.

You cannot add the superclass class to class, because the
superclass has an index that has been created during a
previous transaction.

This error can occur in MT DATA DEFINITION connection mode calling one of
the following functions:

MtCtx AddNumSuccessor

Error Code Reference

185

INVALCLASSMODIF10

INVALCLASSMODIF11

MtCtx AddSuccessor
MtCtx AddSuccessors
MtCtxAddNumSuccessor
MtCtxAddSuccessor
MtCtxAddSuccessors

You cannot remove the superclass class from class, because
the superclass has an index that has been created during a
previous transaction.
This error can occur in MT DATA DEFINITION connection mode when calling
one of the following functions:

MtCtxRemoveNumSuccessor
MtCtx RemovedNumSuccessor
MtCtxRemoveSuccessors

MtCtx RemoveSuccessors

You cannot add the metaschema object object to the
definition of a class.

This error can occur in MT DATA DEFINITION connection mode exclusively,
when calling MtCtxCommitTransaction.

You are not allowed to add a meta-schema object to the definition of a class in
the list of the relationships or in the list of the attributes of a class.

Solution Abort the transaction.
INVALCONNECTION
1204 in not a valid connection
This error occurs when the MtCtxConnectDatabase,
MtCtxDisconnectDatabase, or MtCtxFreeContext functions are called
with a wrong argument, may be a non allocated connection.
Solution Check if you have called MtCtxAllocateContext.
INVALCONNECTOPTION
345 is not a valid connection option
This error occurs when you try to set or get a connection option.
Solution Check the option you specified.
INVALCONNECTIONSTATE

Database "database" on host "host" is not in state INITED

186

Matisse C API Reference

Solution

INVALCREATION

Solution

INVALCRITERIACLAS

INVALCRITERIANB

INVALCRITERIAORDE

INVALCRITERIASIZE

INVALCRITERION

This error occurs when you try to disconnect from a database that is not
connected.

Check if the application has connected to the database.

invalid creation in runtime mode

This error occurs in mode MT DATA MODIFICATION, when the functions
MtCtxCreateObject or MtCtx CreateObject are called, when the creation
is related to a schema object.

Use MT DATA DEFINITION connection mode to create a schema instance.

S
Class class does not have criteria attribute in its
definition

This error can occur in MT DATA DEFINITION connection mode with

MtCtxCommitTransaction.

nbOfCriteria should be less or equal to the index criteria
number x

This error occurs when calling MtCtxOpenIndexEntriesStream,

MtCtx OpenIndexObjectsStream, MtCtxOpenIndexObjectsStream,
MtCtx OpenIndexEntriesStream, with a number of criteria for the start and
end values that exceeds the number of criteria defining the index.

R
attribute’s value of index index is invalid

This error can occur in MT DATA DEFINITION connection mode with

MtCtxCommitTransaction.

attribute’s value of index index is invalid.

This error can occur in MT _DATA DEFINITION connection mode with
MtCtxCommitTransaction.

Attribute attribute cannot be a criterion. It is not of the
right type

This error can occur in MT DATA DEFINITION connection mode with

MtCtxCommitTransaction.

Error Code Reference

187

INVALDATAACCESSMODE

Solutions

INVALDIM

INVALDIRECTION

INVALID ALIAS

INVALID CLASS

Invalid data access mode

This error occurs when calling the function MtCtxSetConnectionOption
with an invalid value for DATA ACCESS_ MODE option.

The possible values for this option are MT DATA READONLY,
MT DATA MODIFICATION, MT DATA DEFINITION.

The dimension for attribute's value for object object must
have a dimension between 1 and x

This error can occur when one of the following functions is called:
MtCtxSetValue
MtCtx SetValue

The property value cannot be stored in the database because the dimension
specified as an argument is either less than to 1, or greater than the highest
possible value for a dimension (specified by the database constraints).

Invalid direction. A direction should be equal to MT DIRECT
or MT REVERSE

This error can occur with MtCtxOpenIndexEntriesStreamn,
MtCtx OpenIndexEntriesStream, MtCtx OpenIndexObjectsStream,
MtCtxOpenIndexObjectsStream.

An alias that was not previously defined is used in a SQL statement.

In a SQL statement, an identifier specified in a FROM clause does not
correspond to a class or to a selection.

INVALID DEFAULTVALUE

In a SQL statement, an incompatible type of value was specified as a default
value for an attribute definition.

INVALID EP ATTRIBUTE

In a SQL statement, an argument of the keyword ENTRY POINT is not correct.

INVALID ESCAPE CHAR

In a SQL statement, the escape character specified in a LIKE clause was
incorrect.

188

Matisse C API Reference

INVALID NUM VALUE

INVALID IDENTIFIER

INVALID PROPERTY

INVALID REQUEST

In a SQL statement, anon-numeric value was specified where a numeric value
was expected.

In a SQL statement, an identifier is invalid. If an identifier begins by a number,
enclose the identifier in quotation marks " ".

In a SQL statement, aproperty specified in a statement is not associated with
any class referenced in the command.

The SQL statement evaluated was not recognized by the analyzer.

INVALID SCALAR VALUE

A scalar value is incorrect for a SQL expression that was analyzed.

INVALID TIMEINTERVAL

INVALID TIMESTAMP

INVALINDEXMODIF1

INVALINDEXMODIF2

In a SQL statement, an invalid format was used for a time interval constant.

In a SQL statement, an invalid format was used for a data or a timestamp
constant.

You cannot modify attribute in index that has been created
during a previous transaction.

This error can occur in MT_DATA DEFINITION connection mode with
MtCtxSetValue, MtCtx SetValue

You cannot add a class to index that has been created during
a previous transaction.

This error can occur in MT DATA DEFINITION connection mode when calling
one of the following functions:

MtCtx AddNumSuccessor
MtCtx AddSuccessor
MtCtx AddSuccessors
MtCtxAddNumSuccessor
MtCtxAddSuccessor

Error Code Reference

189

MtCtxAddSuccessors

INVALINDEXMODIF3
You cannot remove a class from index that has been created
during a previous transaction.
This error can occur in MT_DATA DEFINITION connection mode when calling
one of the following functions:

MtCtx RemovedNumSuccessor
MtCtx RemoveSuccessors
MtCtxRemoveNumSuccessor

MtCtxRemoveSuccessors

INVALINDEXMODIF4
You cannot add a criterion to index that has been created
during a previous transaction.
This error can occur in MT_DATA DEFINITION connection mode when calling
one of the following functions:

MtCtx AddNumSuccessor
MtCtx AddSuccessor
MtCtx AddSuccessors
MtCtxAddNumSuccessor
MtCtxAddSuccessor
MtCtxAddSuccessors

INVALINDEXMODIFS
You cannot remove a criterion from index that has been
created during a previous transaction.

This error can occur in MT _DATA DEFINITION connection mode when calling
one of the following functions:

MtCtx RemovedNumSuccessor
MtCtx RemoveSuccessors
MtCtxRemoveNumSuccessor

MtCtxRemoveSuccessors

INVALINTERVAL
Start value must be less or equal to end value

This error occurs with MtCtxOpenIndexEntriesStream,

MtCtx OpenIndexEntriesStream, MtCtx OpenIndexObjectsStream,
MtCtxOpenIndexObjectsStream. The comparison takes into account the
ordering, that is, the way the Oids have been indexed.

190 Matisse C API Reference

INVALIREL
object's class is not a valid successor of relationship

This error occurs for the following functions:

MtCtxGetPredecessors

MT GetPredecessors
MtCtxMGetPredecessors

MT MGetPredecessors
MtCtxOpenPredecessorsStream
MtCtx OpenPredecessorsStream

This error is returned when the object specified as an argument is not a possible
successor for the relationship relationship. The classes that are allowed are
specified in the property “successors” of the relationship relationship and
the successors's class is not part of this list.

INVALLOCK
invalid lock. A lock should be equal MT READ or MT WRITE

This error can occur when calling one of the following functions:

MtCtxLockNumObjects
MtCtxLockObjects
MtCtxLockObjectsFromEntryPoint
MtCtx LockObjectsFromEntryPoint

The only authorized locks are MT READ and MT WRITE.

INVALLISTOFFSET
The first element offset exceeds the list total number of
elements

This error can occur when calling one of the following functions:
MtCtxGetListElements
MtCtx GetListElements

MtCtxSetListElements
MtCtx SetListElements

INVALLISTSIZE
The list size is limited to LONG MAX elements

This error can occur when calling MtCtxSetListElements or
MtCtx SetListElements.

INVALMAPFUNCTION
you cannot use function on stream

This error can occur when calling MtCtxNextObject or MtCtxNextProperty

Error Code Reference 191

INVALMODIF

Solution

INVALNAMESIZE

The function MtCtxNextProperty can be used only with an object
attribute stream, an object relationship stream Or an object

inverse relationship stream.

The function MtCtxNextObject can be used only with a class stream, an
entrypoint stream, a relationship streamoOr an inverse

relationship stream.

you cannot modify a terminal instance and a meta-schema
instance within the same transaction

This error occurs in MT DATA DEFINITION connection mode exclusively.

It occurs when a terminal instance and a schema instance are modified within
the same transaction.

It can thus occur when calling one of the following functions:

MtCtx AddNumSuccessors
MtCtx AddSuccessor

MtCtx AddSuccessors

MtCtx CreateObject

MtCtx RemoveAllSuccessors
MtCtx_ RemoveNumSuccessors
MtCtx RemoveSuccessors
MtCtx SetValue
MtCtxAddNumSuccessors
MtCtxAddSuccessor
MtCtxAddSuccessors
MtCtxCreateObject
MtCtxRemoveAllSuccessors
MtCtxRemoveNumSuccessors
MtCtxRemoveObject
MtCtxRemoveSuccessors
MtCtxRemoveValue
MtCtxSetValue

In the same transaction, do not perform operations both on the schema and on
terminal instances.

attribute's value in object must be a string between 1 and
256 characters

TK does this still exist now that check functions are gone?

This error can occur in MT_DATA DEFINITION connection mode exclusively.

192

Matisse C API Reference

INVALNB

INVALOP

State

MT COMMIT WAIT

MT CONNECTED

This error occurs at transaction commit.

number of elements %d should be positive

This error occurs when calling a function that possesses either an array of
elements in input, or variable arguments (such as MtCtxAddSuccessors or
MtCtxRemoveNumSuccessors), when the argument that indicates the number
of elements specified is negative or null.

invalid operation. Function function is not allowed in this
context (state)

This error can occur when calling any Matisse function (except reading
functions), when the function cannot be called in the current context.

INVALOP introduces the concept of state. state corresponding to a Matisse
state once the error has been generated. The following table lists all possible
states:

Description

A transaction is in course but any modification is forbidden following a halt in
writing in MtCtxCommitTransaction.

A database connection has been performed, a database is selected, but no
transaction or access in version mode has been performed.

MTSTREAMMODIF A stream opening has been performed in a context where some
modifications are authorized.

MTSSTREAMMODIFCONTEXT A stream opening has been performed in a context where some
modifications are authorized.

MTSTREAMREAD A stream opening has been performed in a context where no writing can be
performed.

MTSTREAMVERSIONMODE A stream opening has been performed in a version access context.

MT TRANSACTION

MT VERSION

INVALPASSWD

Solutions

A transaction has been initiated.

A version access is initiated. Any read access on database objects can be
performed.

Invalid user password

This error occurs when calling the functions MtCtxConnectDatabase or
MtCtxSetOwnPassword, when the specified password is invalid.

With MtCtxConnectDatabase, check if the given password is not NULL.

Error Code Reference

193

INVALPASSWDLEN

Solutions

INVALPRIO

Solutions

INVALPROPREMOVE

Solutions

With MtCtxSetOwnPassword, check that the old password is not NULL.

Invalid password length

This error occurs when calling the functions MtCtxConnectDatabase or
MtCtxSetOwnPassword, when the specified password is invalid.

With MtCtxConnectDatabase, check if the given password is not too long or
if the user name is NULL; if it is, the password must be NULL.

With MtCtxSetOwnPassword, check the old and new password lengths, they
must less or equal to MT USER PASSWORD MAX LEN.

priority should be between 0 and x

This error occurs when calling the functions MtCtxSetConnectionOption for
the option MT SERVER _EXECUTION PRIORITY or MtCtxStartTransaction
with an invalid value.

With MtCtxConnectDatabase, check that the priority is between
MT MIN SERVER EXECUTION PRIORITY and
MT MAX SERVER EXECUTION PRIORITY.

With MtCtxStartTransaction, check that the priority is between
MT MIN TRAN PRIORITY and MT MAX TRAN PRIORITY.

you cannot remove successor from object. successor belongs
to the meta-chema

This error occurs in MT DATA DEFINITION connection mode exclusively.
It occurs when calling one of the following functions:

MtCtx RemoveAllSuccessors

MtCtx RemoveNumSuccessors

MtCtx RemoveSuccessors

MtCtxRemoveAllSuccessors

MtCtxRemoveNumSuccessors

MtCtxRemoveSuccessors
when the modified object is a meta-schema object, and when the successor to
be removed belongs to the meta-schema. The transaction is aborted. You can

remove from a meta-schema object only attributes and relationships which have
previously been added according to the modification constraints.

Add the properties that have been removed;

194

Matisse C API Reference

INVALRANK

INVALRANKINDEX

INVALREL

rank should be between 0 and x

This error occurs when calling the functions MtCtxSetValue or
MtCtx_ SetValue, when the specified rank is either negative, or greater than
the limit indicated in the database constraints.

rankIndex should be between 0 and rank-1

This error occurs when calling the functions MtCtxGetDimension or

MtCtx GetDimension, when the specified dimension is either negative, or
greater than the maximum dimension allowed in the database constraints, or if
it is greater than the rank of the value stored in the base.

relationship is invalid

This error occurs in MT DATA DEFINITION connection mode exclusively, and
when calling one of the following functions:

MtCtx AddNumSuccessors
MtCtx AddSuccessor
MtCtx AddSuccessors
MtCtx GetPredecessors
MtCtx GetSuccessors
MtCtx MGetPredecessors
MtCtx MGetSuccessors
MtCtx OpenPredecessorsStream
MtCtx OpenSuccessorsStream
MtCtx RemoveAllSuccessors
MtCtx RemoveNumSuccessors
MtCtx RemoveSuccessors
MtCtxAddNumSuccessors
MtCtxAddSuccessor
MtCtxAddSuccessors
MtCtxGetPredecessors
MtCtxGetSuccessors
MtCtxMGetPredecessors
MtCtxMGetSuccessors
MtCtxOpenPredecessorsStream
MtCtxOpenSuccessorsStream
MtCtxRemoveAllSuccessors
MtCtxRemoveNumSuccessors
MtCtxRemoveSuccessors

This error occurs when a relationship with no inverse relationship is specified

as an argument. Only a valid relationship (with its inverse relationship) can be
specified as an argument for the identified functions.

Error Code Reference

195

Solution

INVALRELDELETE

Solutions

INVALRELMODIF1

Solution

INVALRELMODIF2

Solutions

In MT DATA MODIFICATION connection mode, relationships are necessarily
valid: this error never occurs in this mode.

Add the inverse relationship to the relationship before calling the function.

you have deleted a relationship without deleting its inverse
relationship.

This error occurs in MT DATA DEFINITION connection mode exclusively.

This error occurs in MT _DATA DEFINITION connection mode exclusively, when
calling:

MtCtxCommitTransaction

When you delete a relationship, you must also delete its inverse relationship.

Delete the relationship’s inverse relationship. Abort the transaction.

you cannot modify a property of a relationship that
specifies an integrity constraint.

This error occurs in MT DATA DEFINITION connection mode exclusively.
It occurs when calling MtCtxCommitTransaction.

This error can occur whenever you try to modify any of a relationship’s
properties that specify an integrity constraint. Properties that specify an
integrity constraint are the attribute MtCardinality, the relationship
MtCtxSuccessors and the attribute MtCtxRelationshipCheckFunction

Cancel the transaction.

you cannot remove Class (which has instances) from
successors in relationship

This error occurs in MT DATA DEFINITION connection mode exclusively.

This error occurs in MT _DATA DEFINITION connection mode exclusively, when
calling:

MtCtxCommitTransaction

You cannot remove a class from the list of valid successors of a relationship if
the class (or one of its subclasses) has instances.

Put back the classes that have been removed during the transaction.

Cancel the transaction.

196

Matisse C API Reference

INVALRELMODIF3

Solutions

INVALRELMODIF4

Solutions

INVALRELMODIFS

Class has a relationship which is the inverse relationship
of relationship, but Class is not a valid successor
(directly or indirectly) of relationship

This error occurs in MT_DATA DEFINITION connection mode exclusively, when
calling:
MtCtxCommitTransaction

if the definition of a class specifies that the class has a relationship, but the
class is not a valid successor for the inverse relationship of the relationship
(taking inheritance into account).

Remove the relationship from the class.

Add the class to the list of valid successors for the inverse relationship of the
added relationship.

Cancel the transaction.

relationship cannot be a relationship of Class which is not
a valid successor of its inverse relationship

This error occurs in MT_DATA DEFINITION connection mode exclusively, when
calling:

MtCtxCommitTransaction

You cannot add a relationship in the class definition if the class is not a valid
successor for the inverse relationship of the added relationship (taking
inheritance into account).

Remove the relationship from the class.

Add the class to the list of valid successors for the inverse relationship of the
added relationship.

Cancel the transaction.

you cannot add one class to relationship in object which is
a universal relationship and is attached to a class having
instances.

This error can occur in MT_DATA DEFINITION connection mode exclusively,
when calling MtCtxCommitTransaction. The transaction is aborted.

When a relationship is attached to at least one class which has instances, and
when it is a universal relationship (the relationship MtSuccessors has no
value, so all the database classes are considered as possible successors for the
relationship), you cannot add successors to this universal relationship through

Error Code Reference

197

Solutions

INVALSTREAM

INVALSTRINGSIZE

INVALSUCCESSOR

INVALSUCCREMOVE

Solutions

the relationship Mt Successors. This would reduce the possible successors for
the relationship and some instances specified with this relationship could
become invalid.

Remove the instances from the class to which the relationship is attached.

Remove the classes that have been added to the relationship via the relationship

MtSuccessors.

stream is not a valid stream for the selected database
This error occurs when calling one of the following functions:

MtCtxCloseStream

MtCtxNextIndexEntry

MtCtxNextObject
MtCtxNextProperty

when the stream specified as an argument does not correspond to a valid open
stream (the stream may have been opened in another connection).

entry point's length should be between 1 and 32

This error can occur when calling any function with an entry-point specified as
an argument (more specifically, all the functions whose argument is the string
associated with a schema object).

successor's class is not a valid successor of relationship

This error can occur when calling MtCtxCommitTransaction.

This error is returned when the successor of an object through a relationship is
not of an appropriate class. The classes that are allowed are specified in the
property MtSuccessors of the relationship relationship and the
successors's class is not part of this list.

relationship cannot become a universal relationship because
it is a metaschema relationship.

This error can occur in MT DATA DEFINITION connection mode only when
calling MtCtxCommitTransaction.

A meta-schema relationship cannot become universal. This means by definition
that you cannot remove all the successors of a meta-schema relationship.

Abort the transaction.

198

Matisse C API Reference

INVALSUCCSNB

invalid number of successors x for relationship relationship

This error can occur when calling MtCtxCommitTransaction when the
number of successors of the relationship in the object does not match the
cardinality.

INVALSUPCLASS
class Class cannot be a Superclass of class Class, otherwise
a cycle in the inheritance is created

This error occurs in MT DATA DEFINITION connection mode exclusively.
It occurs when calling one of the following functions:

MtCtx AddNumSuccessors
MtCtx AddSuccessor
MtCtx AddSuccessors
MtCtxAddNumSuccessors
MtCtxAddSuccessor
MtCtxAddSuccessors

You cannot add a superclass to a class if the superclass equals the class or is
already one of the class's subclasses. The transaction is aborted.

Solutions Remove the class from the list of the superclasses of the modified class.

INVALTIMESTAMP
Not a valid MtTimestamp value
This error occurs when calling the MtCtxSetValue or MtCtx_SetValue
functions, when the specified time is not valid (i.e. one of its fields has an
invalid value).
INVALTIMEINTERVAL
Not a valid MtInterval value
This error occurs when calling the MtCtxSetValue or MtCtx SetValue
functions, when the specified time interval is not valid (i.e. one of its fields has
an invalid value).
INVALTYPE
x is not a valid Matisse type
This error occurs when calling the MtCtxSetValue or MtCtx_SetValue
functions, when the specified type is not valid (i.e. does not belong to the enum
MtType).
INVALUSERNAMELEN

Invalid User name length

Error Code Reference 199

Solutions

INVALWAITTIME

INVALWHERE

INVTRANSPORT

MEMORYFAULT

Solution:

METASCHEMAOBJECT

This error occurs when calling the MtCtxConnectDatabase function when the
specified user name is too long.

Check the user name length, it must be less or equal to
MT USER NAME_ MAX LENGTH.

wait must be greater or equal to -1

This error occurs when calling the MtCtxSetConnectionOption function for
the option MT LOCK_WAIT TIME with a value less than -1.

Invalid argument where. Should be equal to MT FIRST,
MT AFTER or MT APPEND.

This error occurs when calling the MtCtxAddSuccessor function with the
argument where different from MT FIRST, MT AFTER and MT APPEND.

Attempted to connect with an invalid transport

This error occurs, at connect, when an incompatibility exists between specified
transport and other parameters. For example, if you try to connect to a database
localized on a different host with a local transport (i.e. same host), this error is
returned.

No more memory available for operation

This error occurs when there is no memory left on your client machine.

Free memory. You may want to free cache memory using MtCtxFreeObjects.

you cannot modify object which is a meta-schema object

This error occurs in MT DATA DEFINITION connection mode exclusively.
It occurs when calling one of the following functions:

MtCtx AddNumSuccessors
MtCtx AddSuccessor

MtCtx AddSuccessors

MtCtx RemoveAllSuccessors
MtCtx RemoveNumSuccessors
MtCtx RemoveSuccessors
MtCtx RemoveValue

MtCtx SetValue
MtCtxAddNumSuccessors

200

Matisse C API Reference

Solutions

NESTEDVERSION

Solution

NESTEDTRANS

Solution

NOFREETOKEN

Solution

NONULLVALUE

Solution

NOPMADDR

MtCtxAddSuccessor
MtCtxAddSuccessors
MtCtxRemoveAllSuccessors
MtCtxRemoveNumSuccessors
MtCtxRemoveObject
MtCtxRemoveSuccessors
MtCtxRemoveValue
MtCtxSetValue

You cannot delete an object of the original meta-schema, modify an attribute of
an object of the original meta-schema, or add a superclass to a class of the
original meta-schema.

If the problem arises from the addition of a class, remove the class.

attempt to start a version access while another is still
started

This error occurs when calling the functions MtCtxStartVersionAccess,
while a version access is in progress.

End the version access using MtCtxEndVersionAccess.

attempt to start a transaction while another is still opened

This error occurs when calling the function MtCtxStartTransaction, while
another transaction is already opened.

End the current transaction using MtCtxCommitTransaction or
MtCtxAbortTransaction.

All the tokens on the host host are being used by different
connections

This error occurs when calling the function MtCtxConnectDatabase.

Wait until one or more connections are available.

Attribute name for object OID requires a non null value.

This error occurs when attempting to commit an object containing a non-
nullable attribute for which no value has been specified.

Specify a value or make the attribute nullable, as appropriate .

Unable to get Port Monitor address.

Error Code Reference

201

Solution

NOSECURITY

NOSCANNABLEINDEX

NOSUCCESSORS

NOSUCHATT

NOSUCHCLASS

This error occurs when the Port Monitor address can’t be retrieved.

Depending on the host, check NIS or environment variables
MTS PORTMON ADDR and MTS_PORTMON NAME or the file /etc/services.

Invalid operation: access control not used for this database

This error occurs when calling MtCtxSetOwnPassword.

You cannot scann index index. This index has been created
during the current transaction.

This error occurs in MT DATA DEFINITION connection mode only with
MtCtxOpenIndexEntriesStream, MtCtx OpenIndexEntriesStream,
MtCtx OpenIndexObjectsStream, MtCtxOpenIndexObjectsStream,.

object object has no successors for the relationship
relationship

This error occurs when calling one of the following functions:
MtCtxRemoveAllSuccessors
MtCtx RemoveAllSuccessors

when the object has no successor via the relationship specified as an argument.

attribute "attribute name" is undefined

This error occurs when calling one of the following functions:

MtCtxGetAttribute
MtCtxGetDimension
MtCtxGetObjectsFromEntryPoint
MtCtxGetValue
MtCtxLockObjectsFromEntryPoint
MtCtxMGetObjectsFromEntryPoint
MtCtxMGetValue
MtCtxOpenEntryPointStream
MtCtxRemoveValue

MtCtxSetValue

when the specified string is not associated with an attribute.

class "class name" is undefined

This error occurs when calling one of the following function :

MtCtxCreateObject

202

Matisse C API Reference

MtCtxGetAllAttributes
MtCtxGetAllInverseRelationships
MtCtxGetAllRelationships
MtCtxGetAllSubclasses
MtCtxGetAllSuperclasses
MtCtxGetClass
MtCtxGetInstancesNumber
MtCtxGetObjectsFromEntryPoint
MtCtxIsInstanceOf
MtCtxLockObjectsFromEntryPoint
MtCtxMGetAllAttributes
MtCtxMGetAllInverseRelationships
MtCtxMGetAllRelationships
MtCtxMGetAllSubclasses
MtCtxMGetAllSuperclasses
MtCtxMGetObjectsFromEntryPoint
MtCtxOpenEntryPointStream

MtCtxOpenInstancesStream

when the class class name is not a defined class.

NOSUCHCLASSATT
invalid attribute attribute property for class Class

This error occurs when calling one of the following functions:

MtCtx GetDimension

MtCtx GetObjectsFromEntryPoint
MtCtx GetValue

MtCtx LockObjectsFromEntryPoint
MtCtx MGetObjectsFromEntryPoint
MtCtx MGetValue

MtCtx RemoveValue

MtCtx SetValue
MtCtxGetDimension
MtCtxGetObjectsFromEntryPoint
MtCtxGetValue
MtCtxLockObjectsFromEntryPoint
MtCtxMGetObjectsFromEntryPoint
MtCtxMGetValue

MtCtxRemoveValue

MtCtxSetValue

This error occurs when the attribute Attribute is not defined for the class

Class.

Error Code Reference 203

NOSUCHCLASSINDEX
Invalid index index for class class

This error occurs when calling MtCtxOpenIndexEntriesStream,

MtCtx OpenIndexEntriesStream, MtCtx OpenIndexObjectsStream,
MtCtxOpenIndexObjectsStream. The index index is not defined for the
class class.

NOSUCHCLASSREL
invalid relationship relationship for class Class

This error occurs when calling one of the following functions:

MtCtx AddNumSuccessors
MtCtx AddSuccessor

MtCtx AddSuccessors

MtCtx GetAddedSuccessors
MtCtx GetRemovedSuccessors
MtCtx GetSuccessors

MtCtx MGetAddedSuccessors
MtCtx MGetSuccessors

MtCtx OpenSuccessorsStream
MtCtx RemoveAllSuccessors
MtCtx RemoveNumSuccessors
MtCtx RemoveSuccessors
MtCtxAddNumSuccessors
MtCtxAddSuccessor
MtCtxAddSuccessors
MtCtxGetAddedSuccessors
MtCtxGetRemovedSuccessors
MtCtxGetSuccessors

MtCtxM GetRemovedSuccessors
MtCtxMGetAddedSuccessors
MtCtxMGetRemovedSuccessors
MtCtxMGetSuccessors
MtCtxOpenSuccessorsStream
MtCtxRemoveAllSuccessors
MtCtxRemoveNumSuccessors

MtCtxRemoveSuccessors

This error occurs when the relationship relationship is not defined for the
class Class.

NOSUCHDB
database "database" not found on host "host"

The database does not exist on the host host.

Solution Check the name of your database and of your host.

204 Matisse C API Reference

NOSUCHHOST

Solution

NOSUCHINDEX

NOSUCHREL

NOSUCHSELECTION

NOSUCHSUCC

Host "host" not found

This error occurs when calling the function MtCtxConnectDatabase. It is
impossible to find the server host.

Check the name of your host. Ask the system engineer if the server is running.

Index "index name" is undefined

This error can occur with MtCtxOpenIndexEntriesStrean,
MtCtx OpenIndexEntriesStream, MtCtxGetIndexInfo,
MtCtxMGetIndexInfo, MtCtx OpenlIndexObjectsStream,
MtCtxOpenIndexObjectsStream.

relationship "relationship name" is undefined

This error occurs when calling a function with a string that identifies a
relationship as an argument or when calling one of the following functions:

MtCtxAddNumSuccessors
MtCtxAddSuccessor
MtCtxAddSuccessors
MtCtxGetAddedSuccessors
MtCtxGetPredecessors
MtCtxGetRelationship
MtCtxGetRemovedSuccessors
MtCtxGetSuccessors
MtCtxMGetAddedSuccessors
MtCtxMGetPredecessors
MtCtxMGetRemovedSuccessors
MtCtxMGetSuccessors
MtCtxOpenPredecessorsStream
MtCtxOpenSuccessorsStream
MtCtxRemoveAllSuccessors
MtCtxRemoveNumSuccessors

MtCtxRemoveSuccessors

when the specified string is not associated with a relationship.

The specified SQL selection does not exist.

successor successor does not exist

This error occurs when calling one of the following functions:

Error Code Reference

205

NOSUCHVERSION

NOTENOUGHSPACE

Solution

NOTRANORVERSION

NOTRANS

MtCtxAddSuccessor

MtCtx AddSuccessor
MtCtxRemoveNumSuccessors
MtCtx_ RemoveNumSuccessors
MtCtxRemoveSuccessors
MtCtx RemoveSuccessors

For the remove successor functions, one of the successors to be deleted does
not exist in the object. No deletion has been initiated.

For the adding successor functions, the successor specified behind the
MT_ AFTER argument does not exist in the object. No addition has been
performed.

version "versionname" is undefined

This error can occur in the function MtCtxStartVersionAccess.

This error occurs when there is an attempt to position to the specified version at
the time that corresponds to versionname but no MtCtxCommitTransaction
has been performed with versionname as a prefix. It is therefore impossible to
position to the time timename.

not enough space to copy data. num bytes needed
This error occurs when calling one of the following functions:
MtCtxGetValue

MtCtx GetValue
MtCtxNextTime

Matisse attempts to copy the data in the space allocated by the user. The pointer
and the size are specified in the arguments. Matisse has insufficient space to
copy the data.

Increase the size so as to make it at least equal to num bytes.

attempt to access objects without a transaction or version
access

This error can occur in any function where an access to an object is performed
without previously opening a transaction or without being in version mode.

transaction not opened

This error occurs during a modification function. No transaction is opened.

206

Matisse C API Reference

NOVALUE
attribute Attribute has no value in object object

This error occurs when calling one of the following functions:
MtCtxRemoveValue
MtCtx RemoveValue

when the attribute has no value in the object.

NOVERSIONACCESS
no version access
This error occurs when calling the function MtCtxEndVersionAccess. You
can stop the version mode if no MtCtxStartVersionAccess has been
started.
NULLPOINTER
null pointer
A null pointer is specified as an argument, and this pointer should not be null.
OBJECTDELETED
object identifier has been deleted
This error can occur in any function where an object Oid is specified. This
means that the object no longer exists. It has been deleted with the function
MtCtxRemoveObject within the current transaction.
OBJECTNOTEOUND
object identifier not found
This error can occur in any function where an object Oid is specified as an
argument. This means that the object does not exist.
OPDENIED
Operation denied: insufficient privileges or wrong password
This error can occur when calling MtCtxConnectDatabase. There are three
possible reasons for this:
- the user is not authorized,
- the specified password is wrong,
- the user has insufficient privileges for the data access mode specified.
PMCONFATILED

Unable to connect to Port Monitor

This error occurs at connection, when you are unable to connect to the Port
Monitor.

Solution Check that Port Monitor is running

Error Code Reference 207

PROPERTYEXISTS
"property name" is already the name of the property property

This error occurs in MT DATA DEFINITION connection mode exclusively.
It occurs when calling one of the following functions:

MtCtxSetValue
MtCtx SetValue

You cannot set as the external name for a property, a name that is already used
for an existing property. The transaction is aborted.

Solutions Set as the external name of the property, a name that does not already exist.

RELEXPECTED
object is not a relationship

This error occurs either when calling a function defined with a relationship
identifier as an argument, or when calling one of the following functions:

MtCtx AddNumSuccessors
MtCtx AddSuccessor

MtCtx AddSuccessors

MtCtx GetAddedSuccessors
MtCtx GetPredecessors

MtCtx GetRemovedSuccessors
MtCtx GetSuccessors

MtCtx MGetAddedSuccessors
MtCtx MGetPredecessors
MtCtx MGetRemovedSuccessors
MtCtx MGetSuccessors

MtCtx OpenPredecessorsStream
MtCtx OpenSuccessorsStream
MtCtx RemoveAllSuccessors
MtCtx RemoveNumSuccessors

MtCtx RemoveSuccessors

when the specified identifier is not a relationship.

SCHEMAWITHDAEMONS
class or attribute has before or/and after modification
daemons (s)

It occurs when calling one of the following functions:

MtCtxSetListElements
MtCtx SetListElements

208 Matisse C API Reference

SELECTIONSTREAMOPEN

There are some streams open associated with the SQL selection. Close these
streams before calling the function.

STMT TOO COMPLEX

SQL statement too complex.

STREAMCLOSED
stream opened by application closed by DBA tool

This error occurs when a stream opened by the application is inadvertently
aborted by server administration utilities. This message can be returned by any
of the following functions:

MtCtxCloseStream
MtCtxConnectDatabase
MtCtxNextObject
MtCtxStartVersionAccess
MtCtxStartTransaction

Solution Make sure that the system administrator and/or other users do not abort streams
opened by the application.

SUCCESS

Status returned upon successful execution of a SQL statement.

SYNTAX ERROR

Miscellaneous SQL syntax error: incorrect use of parentheses, invalid
expression, etc.

SYSTEMERROR

system error
This error should never happen but it might occur after a call to a Matisse

function.

Solution Contact your Matisse Software support center.

TOO MANY VALUES

In a SQL statement, too many values are specified in INSERT statement's
VALUE clause.

TOO_FEW VALUES

In a SQL statement, too few values are specified in INSERT statement's
VALUE clause.

Error Code Reference 209

TRANABORTED
transaction opened by application aborted by server admin

This error occurs when a transaction opened by the application is inadvertently
aborted by server administration utilities. This message can be returned by any
of the following functions:

MtCtx OpenIndexObjectsStream
MtCtxAbortTransaction
MtCtxAddNumSuccessors
MtCtxAddSuccessor
MtCtxAddSuccessors
MtCtxCommitTransaction
MtCtxCreateNumObjects
MtCtxCreateObject
MtCtxGetAllAttributes
MtCtxGetAllInverseRelationships
MtCtxGetAllRelationships
MtCtxGetAllSubclasses
MtCtxGetAllSuperclasses
MtCtxGetAttribute
MtCtxGetClass
MtCtxGetDimension
MtCtxGetInstancesNumber
MtCtxGetObjectClass
MtCtxGetObjectsFromEntryPoint
MtCtxGetPredecessors
MtCtxGetRelationship
MtCtxGetSuccessors
MtCtxGetValue
MtCtxIsInstanceOf
MtCtxLoadNumObjects
MtCtxLoadObjects
MtCtxLockNumObjects
MtCtxLockObjects
MtCtxLockObjectsFromEntryPoint
MtCtxNextObject
MtCtxObjectSize
MtCtxOpenAttributesStream
MtCtxOpenEntryPointStream
MtCtxOpenIndexEntriesStream
MtCtxOpenIndexObjectsStream
MtCtxOpenInstancesStream
MtCtxOpenInverseRelationshipsStream
MtCtxOpenPredecessorsStream

MtCtxOpenRelationshipsStream

210 Matisse C API Reference

TRANSDISABLED

Solution

TRANSNOTALLOWED

Solution

TRANSOPENED

Solution

TYPEMISMATCH

MtCtxOpenSuccessorsStream
MtCtxPrint
MtCtxRemoveAllSuccessors
MtCtxRemoveNumSuccessors
MtCtxRemoveObject
MtCtxRemoveSuccessor
MtCtxRemoveSuccessors
MtCtxRemoveValue
MtCtxSetValue

Transaction Processing has been disabled

This error can occur when calling MtCtxStartTransaction, or when calling
MtCtxConnectDatabase in MT DATA READONLY mode. This error can also be
returned when using the commands mt_init database. This error indicates
that transaction processing has been disabled by the administrator.

Check with the database administrator to see if transaction processing can be
enabled. Normally, transaction processing can be enabled with the transaction
processing option in the DBA Tool.

You are connected in a version only mode
This error can occur when calling MtCtxStartTransaction.

It occurs when the user attempts to open a transaction once a database has been
opened with MT DATA READONLY access mode.

Call MtCtxSetConnectionOption with MT DATA MODIFICATION Or
MT_DATA DEFINITION mode.

attempt to set a time inside a transaction

This error occurs when calling MtCtxStartVersionAccess. This error
indicates that you are in transaction mode and cannot make an access in version
mode.

Commit or abort your transaction to exit.

The attribute’s value type does not correspond to the type
argument

This error occurs when calling one of the following functions:

MtCtxGetListElements, MtCtx GetListElements
MtCtxSetListElements, MtCtx SetListElements

Error Code Reference

211

TYPENOTALLOWED

The specified type is not allowed for the current function

This error occurs when calling one of the following functions:

MtCtxGetListElements, MtCtx GetListElements
MtCtxSetListElements, MtCtx SetListElements

UNEXPECTEDDUPLICATES

UNLOADABLEOBJECT

VERSIONMODE

Solution

successor is referenced twice unexpectedly

This error occurs when adding or removing the same successor to an object
multiple times.

This error can occur when calling one of the following functions:

MtCtxAddSuccessors
MtCtxRemoveSuccessors

object cannot be unloaded

This error can occur when calling one of the following functions:

MtCtxFreeNumObjects
MtCtxFreeObjects

This error indicates that one of the objects specified as an argument is a schema
object, or has been modified during the transaction, or is an object on which a

relationship stream

inverse relationship stream

object attribute stream

object relationship stream

object inverse relationship stream

has been opened.

CAUTION: MtCtxFreeObjects and MtCtxFreeNumObjects are atomic
functions : either all the objects specified as arguments are
retrieved, or none are.

attempt to start a transaction in version mode

This error occurs when calling MtCtxStartTransaction after you have
previously called MtCtxStartVersionAccess. This error indicates that you
are then in version mode and cannot perform modifications. As a result, you
cannot open a transaction.

Use the function MtCtxEndVersionAccess to exit the transaction mode.

212

Matisse C API Reference

WAITTIME

WRITEWAITTIME

lock not obtained due to short wait-time

This error can occur during a read, write or lock operation. When trying to
obtain a read or write lock on the server, you are positioned in a queue. Your
position in this queue depends on the number of seconds specified in the
functions MtCtxSetConnectionOption. If the lock is not obtained after the
time has elapsed, this error is returned.

If a deadlock is detected however, the DEADLOCKABORT error is returned.

write lock not obtained due to short wait-time

This error can occur if the wait time, set with MtCtxConnect or
MtSetWaitTime, is different from MT WAIT FOREVER. If write locks cannot be
acquired while the objects are being written, the MATISSE WRITEWAITTIME
error occurs. Even though the transaction is neither committed nor aborted, no
other modifications are allowed. All modification functions will return
MATISSE INVALOP.

If the wait time is MT WAIT FOREVER, a deadlock is detected and the
DEADLOCKABORT error is returned.

Error Code Reference

213

Index

A

AbortTransaction 42
AddSuccessor 38, 43
AddSuccessors 45
AllocateConnection 47
AllocateContext 47

C

CloseStream 47
CommitTransaction 48
ConnectDatabase 50
CreateObject 11, 52
CurrentConnection 53
CurrentDate 53

D

DisconnectDatabase 53

E

Embedded SQL 29
EndVersionAccess 54
EPStream 23

Error 56

Error Handling 30

F

Failure 56

Free 56
FreeConnection 57
FreeObjects 57

G

GetAddedSuccessors 58
GetAllAttributes 60
GetAlllnverseRelationships 62

GetAllRelationships 66
GetAllSubclasses 67
GetAllSuperclasses 69
GetAttribute 71

GetClass 71
GetClassAttribute 72
GetClassRelationship 73
GetConfigurationInfo 74
GetConnectionOption 74
GetDimension 76
Getlndex 77

GetIndexInfo 78
GetlnstancesNumber 79
GetListElements 80
GetNumDataBytesReceived 82
GetNumDataBytesSent 82
GetObjectClass 83
GetObjectsFromEntryPoint 83
GetObjectsFromIndex 86
GetPredecessors 88
GetRelationship 90
GetRemovedSuccessors 91
GetSuccessors 93
GetValue 95

|

IndexStream 24
IntervalAdd 102
IntervalBuild 103
IntervalCompare 102
IntervalDivide 103
IntervalMultiply 104
IntervalPrint 104
IntervalSubtract 105
IRelStream 24
IsInstanceOf 105
IsPredefinedObject 106

214

MATISSE C API Reference

L

LoadObjects 107

LockObjects 108
LockObjectsFromEntryPoint 110
Locks 31

M

MakeUserError 111
MATISSE_ENDOFSTREAM 24
MATISSE USERERROR 30
MT_AFTER 38

MT_APPEND 38
MT_ASCEND 37

MT_AUDIO 40
MT_BOOLEAN 39

MT BOOLEAN_LIST 39

MT BYTE 40

MT BYTES 40

MT_CHAR 39

MT DATA DEFINITION 20, 21
MT _DATA_ MODIFICATION 20
MT _ DATE 39

MT_DATE LIST 39

MT DESCEND 37

MT _DIRECT 36

MT DOUBLE 39

MT _DOUBLE LIST 39

MT FALSE 36

MT _FIRST 38

MT_FLOAT 39

MT_FLOAT LIST 39

MT_ IMAGE 40

MT _INTEGER 39

MT _INTEGER_LIST 39

MT _LOCAL TIMESTAMP 38
MT_LONG 39
MT_LONG_LIST 39

MT MAX_SERVER EXECUTION P
RIORITY 37

MT _MAX_TRAN_PRIORITY 38

MT_MIN_SERVER_EXECUTION_P
RIORITY 37

MT_MIN_TRAN_PRIORITY 38
MT _NO_WAIT 37

MT _NULL 39
MT_NUMERIC 40
MT_NUMERIC LIST 40
MT_REVERSE 36
MT_SHORT 39

MT _SHORT LIST 39
MT_STRING 39

MT _TEXT 39

MT_TIME INTERVAL 39
MT_TIME_INTERVAL_LIST 39
MT_TIMESTAMP 39
MT_TIMESTAMP_LIST 40
MT _TRUE 36
MT_UNIVERSAL TIMESTAMP 38
MT_VIDEO 40
MT_WAIT _FOREVER 37
MtAddSuccessor 38
MtBoolean 36

MtChar 36

MtCloseStream 10, 24, 32
MtCommitTransaction 32
MtConfigurationType 36
MtConnection 36
MtCreateObject 11
MtDirection 36

MtDouble 36
MtEndVersionAccess 10
MtError 30

MtFailure 30

MtFloat 36

MtGet 11

MtGetListElts 13
MtGetSuccessors 26
MtIndexCriterialnfo 36
MtlInteger 37

Mtlnterval 38

MtLock 37
MtLockWaitTime 37
MtLong 37
MtMakeEntryFunction 13

Index

215

MtMakeUserError 30
MtMGet 11

MtName 13
MtNextIndexEntry 24
MtNextObject 23
MtNextProperty 24
MtNextVersion 10, 32
MtNoCurrentConnection 8
MtOid 37
MtOpenClassStream 23
MtOpenEPStream 23
MtOpenIRelStream 24
MtOpenObjAttStream 24
MtOpenObjectIRelStream 24
MtOpenObjRelStream 24
MtOpenRelStream 24
MtOpenVersionStream 32
MtOrdering 37

MtPError 30

MtPrint 31
MtServerExecutionPriority 37
MtSetConnectionOption 9
MtSetListElts 21

MtShort 37

MtSize 37
MtStartVersionAccess 10
MtStream 37

MtString 37

MtSTS 30, 37

MtSuccess 30
MtTimestamp 38
MtTimestampType 38
MtTranPriority 38
MtType 38, 41

MtWhere 38

N

NextIndexEntry 111
NextObject 113
NextObjects 114
NextProperty 115

NextVersion 116
NumericAdd 116
NumericBuild 117
NumericCompare 117
NumericDivide 118
NumericFromDouble 118
NumericFromLong 119
NumericGetPrecision 119
NumericGetScale 119
NumericMultiply 120
NumericPrint 120
NumericRound 121
NumericSubtract 123
NumericToDouble 121
NumericToLong 121

o)

ObjectAttStream 24
ObjectRelStream 24
ObjectSize 123
ObjIRelStream 24

OidEQ 124
OpenAttributesStream 124
OpenEntryPointStream 125
OpenIndexEntriesStream 126
OpenlndexObjectsStream 129
OpenlnstancesStream 132
OpenlnverseRelationshipsStream 134
OpenOwnlnstancesStream 136
OpenPredecessorsStream 137
OpenRelationshipsStream 138
OpenSuccessorsStream 139

OpenVersionStream 140

P
PError 140
Print 141

R

RemoveAllSuccessors 141
RemoveObject 142

216

MATISSE C API Reference

RemoveSuccessors 143
RemoveValue 145

S

SetConnectionOption 147
SetCurrentConnection 149
SetListElements 149
SetOwnPassword 151
SetValue 151

SQL 29

SQLAIllocStmt 155
SQLExecDirect 155
SQLFreeStmt 157
SQLGetColumnInfo 158

SQLGetParamDimensions 158
SQLGetParamListElements 159

SQLGetParamValue 160

SQLGetRowListElements 161

SQLGetRowValue 163
SQLGetStmtInfo 164
SQLGetStmtType 166
SQLNext 167
SQLNumResultCols 168
SQLOpenStream 168
StartTransaction 168
StartVersionAccess 169

Success 170

T
TimestampAdd 170
TimestampBuild 171
TimestampCompare 172
TimestampDiff 172
TimestampGetCurrent 173
TimestampPrint 173
TimestampSubtract 174

Index

217

218 MATISSE C API Reference

	Matisse® C�API�Reference
	Contents
	1 Functions by Themes
	1.1 Database Connection
	Session
	Summary
	List of Functions

	1.2 Database Access
	Transaction
	Version Access
	Summary
	List of Functions

	1.3 Database Reading
	Overview
	Schema Access
	Object Description
	Value of a Property
	Relations
	Multimedia Streaming
	Loading Objects
	Access Through Entry Points
	Access Through Indexes
	Information about Modified Successors
	List of Functions
	Schema Access
	Object Description
	Attribute Value in an Object
	Relationship Value in an Object
	Inverse Links in an Object
	Loading Object
	Entry Points Access
	Index Access
	Modified Successors

	1.4 Database Modification
	Overview
	Object Validation
	Multimedia Streaming
	Entry Points
	Indexes
	List of Functions
	Object Creation
	Object Deletion
	Object Modification
	Entry Points

	1.5 Object Streaming
	Overview
	List of Functions

	1.6 Class Description Access
	List of Functions

	1.7 Embedded SQL
	List of Functions

	1.8 Error Handling
	Status Management
	Summary
	List of Functions
	Variable

	1.9 Miscellaneous
	Dates and Times
	Numeric Types
	Print Function
	Locks
	Save Time Enumeration
	Memory Management
	List of Functions
	Dates and Times
	Numeric Types
	Print Function
	Locks
	Save Times
	Memory Management

	2 Type Reference
	2.1 Matisse Programming Types
	MtBoolean
	MtChar
	MtConfigurationType
	MtContext
	MtDirection
	MtDouble
	MtFloat
	MtIndexCriteriaInfo
	MtOid
	MtLock
	MtLockWaitTime
	MtOrdering
	MtShort
	MtInteger
	MtLong
	MtServerExecution Priority
	MtSize
	MtStream
	MtString
	MtSTS
	MtTimestamp
	MtInterval
	MtTimestampType
	MtTranPriority
	MtType
	MtWhere

	2.2 Matisse Data Types
	MT_BOOLEAN
	MT_BOOLEAN_LIST
	MT_CHAR
	MT_DATE
	MT_DATE_LIST
	MT_DOUBLE
	MT_DOUBLE_LIST
	MT_FLOAT
	MT_FLOAT_LIST
	MT_NULL
	MT_SHORT
	MT_SHORT_LIST
	MT_INTEGER
	MT_INTEGER_LIST
	MT_LONG
	MT_LONG_LIST
	MT_STRING, MT_TEXT
	MT_TIME_INTERVAL
	MT_TIME_INTERVAL_LIST
	MT_TIMESTAMP
	MT_TIMESTAMP_LIST
	MT_BYTE
	MT_BYTES, MT_AUDIO, MT_VIDEO, MT_IMAGE
	MT_NUMERIC
	MT_NUMERIC_LIST

	2.3 Type Correspondences

	3 Detailed API Reference
	AbortTransaction
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	AddSuccessor
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	AddSuccessors
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	AllocateContext
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	CloseStream
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	CommitTransaction
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	ConnectDatabase
	Syntax
	Purpose
	Arguments
	Result
	Description
	Example
	See also

	CreateObject
	Syntax
	Purpose
	Arguments
	Result
	Description

	CurrentDate
	Syntax
	Purpose
	Arguments
	Result
	See also

	DisconnectDatabase
	Syntax
	Purpose
	Arguments
	Result
	See also

	EndVersionAccess
	Syntax
	Purpose
	Result
	See also

	Error
	Syntax
	Purpose
	Result
	See also

	EventNotify
	Syntax
	Purpose
	Arguments
	Result
	See also

	EventSubsribe
	Syntax
	Purpose
	Arguments
	Result
	See also

	EventUnsubscribe
	Syntax
	Purpose
	Arguments
	Result
	See also

	EventWait
	Syntax
	Purpose
	Arguments
	Result
	See also

	Failure
	Syntax
	Purpose
	Arguments
	Result
	See also

	Free
	Syntax
	Purpose
	Arguments
	Result
	Description

	FreeContext
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	FreeObjects
	Syntax
	Purpose
	Arguments
	Result
	Description

	GetAddedSuccessors
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	GetAllAttributes
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	GetAllInverseRelationships
	Syntax
	Purpose
	Arguments
	Result
	Description
	Example
	Listing Possible Inverse Relationships
	See also

	GetAllRelationships
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	GetAllSubclasses
	Syntax
	Purpose
	Arguments
	Result
	Description

	GetAllSuperclasses
	Syntax
	Purpose
	Arguments
	Result
	Description

	GetAttribute
	Syntax
	Purpose
	Arguments
	Result
	Description

	GetClass
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	GetClassAttribute
	Syntax
	Purpose
	Arguments
	Result
	Description

	GetClassRelationship
	Syntax
	Purpose
	Arguments
	Result
	Description

	GetConfigurationInfo
	Syntax
	Purpose
	Arguments
	Description

	GetConnectionOption
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	GetDimension
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	GetIndex
	Syntax
	Purpose
	Arguments
	Result
	See also

	GetIndexInfo
	Syntax
	Purpose
	Arguments
	Result
	See also

	GetInstancesNumber
	Syntax
	Purpose
	Arguments
	Result
	Description

	GetListElements
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	GetNumDataBytesReceived
	Syntax
	Purpose
	Arguments
	Result

	GetNumDataBytesSent
	Syntax
	Purpose
	Arguments
	Result

	GetObjectClass
	Syntax
	Purpose
	Arguments
	Result
	Description

	GetObjectsFromEntryPoint
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	GetObjectsFromIndex
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	GetPredecessors
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	GetRelationship
	Syntax
	Purpose
	Arguments
	Result
	Description

	GetRemovedSuccessors
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	GetSuccessors
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	GetUserError
	Syntax
	Purpose
	Result
	Description
	See also

	GetValue
	Syntax
	Purpose
	Arguments
	Result
	Description
	Example 1
	Example 2
	See also

	IntervalAdd
	Syntax
	Purpose
	Arguments
	Result
	See also

	IntervalCompare
	Syntax
	Purpose
	Arguments
	Result

	IntervalDivide
	Syntax
	Purpose
	Arguments
	Result
	See also

	IntervalBuild
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	IntervalMultiply
	Syntax
	Purpose
	Arguments
	Result
	See also

	IntervalPrint
	Syntax
	Purpose
	Arguments
	Result
	See also

	IntervalSubtract
	Syntax
	Purpose
	Arguments
	Result
	See also

	IsInstanceOf
	Syntax
	Purpose
	Arguments
	Result
	Description

	IsPredefinedObject
	Syntax
	Purpose
	Arguments
	Result

	LoadObjects
	Syntax
	Purpose
	Arguments
	Result
	Description

	LockObjects
	Syntax
	Purpose
	Arguments
	Result
	Description
	Example

	LockObjectsFromEntryPoint
	Syntax
	Purpose
	Arguments
	Result
	Description

	MakeUserError
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	NextIndexEntry
	Syntax
	Purpose
	Arguments
	Result
	Description
	Example
	See also

	NextObject
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	NextObjects
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	NextProperty
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	NextVersion
	Syntax
	Purpose
	Arguments
	Result
	See also

	NumericAdd
	Syntax
	Purpose
	Arguments
	Result

	NumericBuild
	Syntax
	Purpose
	Arguments
	Results

	NumericCompare
	Syntax
	Purpose
	Arguments
	Result

	NumericDivide
	Syntax
	Purpose
	Arguments
	Result

	NumericFromDouble
	Syntax
	Purpose
	Arguments
	Results

	NumericFromLong
	Syntax
	Purpose
	Arguments
	Results

	NumericGetPrecision
	Syntax
	Purpose
	Arguments
	Result

	NumericGetScale
	Syntax
	Purpose
	Arguments
	Result

	NumericMultiply
	Syntax
	Purpose
	Arguments
	Result

	NumericPrint
	Syntax
	Purpose
	Arguments
	Result

	NumericToDouble
	Syntax
	Purpose
	Arguments
	Results

	NumericToLong
	Syntax
	Purpose
	Arguments
	Results

	NumericRound
	Syntax
	Purpose
	Arguments
	Results
	Description

	NumericSubtract
	Syntax
	Purpose
	Arguments
	Result

	ObjectSize
	Syntax
	Purpose
	Argument
	Result
	Description

	OidEQ
	Syntax
	Purpose
	Arguments
	Result

	OpenAttributesStream
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	OpenEntryPointStream
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	OpenIndexEntriesStream
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	OpenIndexObjectsStream
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	OpenInstancesStream
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	OpenInverseRelationshipsStream
	Syntax
	Purpose
	Arguments
	Result
	Description
	Example
	Listing Possible Inverse Relationships of a Class
	See also

	OpenOwnInstancesStream
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	OpenPredecessorsStream
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	OpenRelationshipsStream
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	OpenSuccessorsStream
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	OpenVersionStream
	Syntax
	Purpose
	Arguments
	Result
	See also

	PError
	Syntax
	Purpose
	Arguments
	Example

	Print
	Syntax
	Purpose
	Arguments
	Result
	Description

	RemoveAllSuccessors
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	RemoveObject
	Syntax
	Purpose
	Arguments
	Result
	Description

	RemoveSuccessors
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	RemoveValue
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	SetConnectionOption
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	SetListElements
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	SetOwnPassword
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	SetValue
	Syntax
	Purpose
	Arguments
	Result
	Description
	Example
	See also

	SQLAllocStmt
	Syntax
	Arguments
	Result
	Purpose

	SQLExecDirect
	Syntax
	Arguments
	Result
	Purpose
	Description

	SQLFreeStmt
	Syntax
	Arguments
	Result
	Purpose

	SQLGetColumnInfo
	Syntax
	Arguments
	Result
	Purpose

	SQLGetParamDimensions
	Arguments
	Result
	Purpose

	SQLGetParamListElements
	Arguments
	Result
	Purpose

	SQLGetParamValue
	Arguments
	Result
	Purpose
	Description

	SQLGetRowListElements
	Syntax
	Arguments
	Result
	Purpose

	SQLGetRowValue
	Syntax
	Arguments
	Result
	Purpose

	SQLGetStmtInfo
	Syntax
	Arguments
	Result
	Purpose

	SQLGetStmtType
	Syntax
	Arguments
	Result
	Purpose

	SQLNext
	Syntax
	Arguments
	Result
	Purpose

	SQLNumResultCols
	Syntax
	Arguments
	Purpose

	SQLOpenStream
	Syntax
	Arguments
	Purpose

	StartTransaction
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	StartVersionAccess
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	Success
	Syntax
	Purpose
	Arguments
	Result
	See also

	TimestampAdd
	Syntax
	Purpose
	Arguments
	Result
	See also

	TimestampBuild
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	TimestampCompare
	Syntax
	Purpose
	Arguments
	Result
	Description

	TimestampDiff
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	TimestampGetCurrent
	Syntax
	Purpose
	Arguments
	Result
	Descrtiption
	See also

	TimestampPrint
	Syntax
	Purpose
	Arguments
	Result
	Description
	See also

	TimestampSubtract
	Syntax
	Purpose
	Arguments
	Result
	See also

	4 Error Code Reference
	ALREADYSUCC
	AMBIGUOUS_IDENTIFIER
	ARG_OUTOFBOUND
	ARRAYTOOSMALL
	Solution

	ATTEXPECTED
	CLASSEXISTS
	Solutions

	CLASSEXPECTED
	CLASS_NAME_USED
	CLASSWITHINSTANCES
	Solutions

	CONNECTREJECT
	CONNLOST
	Solutions

	CONNTIMEOUT
	Solution

	CONSTANT_TOO_LONG
	DBALREADYINITED
	Solutions

	DBNAMETOOLONG
	Solution

	DBINWRONGSTATE
	Solution

	DBNOTINIT
	Solution

	DBNOTOPENED
	Solution

	DEADLOCK
	Solutions

	DEADLOCKABORT
	Solution

	DIVISION_BY_ZERO
	EMPTYSTRING
	ENDOFSTREAM
	Solution

	EXCEEDSLIMIT
	Solution:

	FAILURE
	FROZENOBJECT
	Solution

	INCOMPCRITERIANUMBER
	INCOMPCRITERIASIZE
	INCOMPOP
	INCOMPRANKVALUE
	INCOMPTYPE
	Solutions

	INCOMPVERSION
	Solutions

	INDEXEXISTS
	INDEXEXPECTED
	INDEXEDATT
	INDEXINCREATION
	INTERNALERROR
	Solution

	INVALARG
	INVALATTMODIF1
	Solutions

	INVALATTMODIF2
	Solutions

	INVALATTMODIF6
	INVALATTTYPE
	Solution

	INVALBOOL
	INVALCARDINALITY
	INVALCLASSMODIF4
	Solutions

	INVALCLASSMODIF5
	Solutions

	INVALCLASSMODIF9
	INVALCLASSMODIF10
	INVALCLASSMODIF11
	Solution

	INVALCONNECTION
	Solution

	INVALCONNECTOPTION
	Solution

	INVALCONNECTIONSTATE
	Solution

	INVALCREATION
	Solution

	INVALCRITERIACLASS
	INVALCRITERIANB
	INVALCRITERIAORDER
	INVALCRITERIASIZE
	INVALCRITERION
	INVALDATAACCESSMODE
	Solutions

	INVALDIM
	INVALDIRECTION
	INVALID_ALIAS
	INVALID_CLASS
	INVALID_DEFAULTVALUE
	INVALID_EP_ATTRIBUTE
	INVALID_ESCAPE_CHAR
	INVALID_NUM_VALUE
	INVALID_IDENTIFIER
	INVALID_PROPERTY
	INVALID_REQUEST
	INVALID_SCALAR_VALUE
	INVALID_TIMEINTERVAL
	INVALID_TIMESTAMP
	INVALINDEXMODIF1
	INVALINDEXMODIF2
	INVALINDEXMODIF3
	INVALINDEXMODIF4
	INVALINDEXMODIF5
	INVALINTERVAL
	INVALIREL
	INVALLOCK
	INVALLISTOFFSET
	INVALLISTSIZE
	INVALMAPFUNCTION
	INVALMODIF
	Solution

	INVALNAMESIZE
	INVALNB
	INVALOP
	INVALPASSWD
	Solutions

	INVALPASSWDLEN
	Solutions

	INVALPRIO
	Solutions

	INVALPROPREMOVE
	Solutions

	INVALRANK
	INVALRANKINDEX
	INVALREL
	Solution

	INVALRELDELETE
	Solutions

	INVALRELMODIF1
	Solution

	INVALRELMODIF2
	Solutions

	INVALRELMODIF3
	Solutions

	INVALRELMODIF4
	Solutions

	INVALRELMODIF5
	Solutions

	INVALSTREAM
	INVALSTRINGSIZE
	INVALSUCCESSOR
	INVALSUCCREMOVE
	Solutions

	INVALSUCCSNB
	INVALSUPCLASS
	Solutions

	INVALTIMESTAMP
	INVALTIMEINTERVAL
	INVALTYPE
	INVALUSERNAMELEN
	Solutions

	INVALWAITTIME
	INVALWHERE
	INVTRANSPORT
	MEMORYFAULT
	Solution:

	METASCHEMAOBJECT
	Solutions

	NESTEDVERSION
	Solution

	NESTEDTRANS
	Solution

	NOFREETOKEN
	Solution

	NONULLVALUE
	Solution

	NOPMADDR
	Solution

	NOSECURITY
	NOSCANNABLEINDEX
	NOSUCCESSORS
	NOSUCHATT
	NOSUCHCLASS
	NOSUCHCLASSATT
	NOSUCHCLASSINDEX
	NOSUCHCLASSREL
	NOSUCHDB
	Solution

	NOSUCHHOST
	Solution

	NOSUCHINDEX
	NOSUCHREL
	NOSUCHSELECTION
	NOSUCHSUCC
	NOSUCHVERSION
	NOTENOUGHSPACE
	Solution

	NOTRANORVERSION
	NOTRANS
	NOVALUE
	NOVERSIONACCESS
	NULLPOINTER
	OBJECTDELETED
	OBJECTNOTFOUND
	OPDENIED
	PMCONFAILED
	Solution

	PROPERTYEXISTS
	Solutions

	RELEXPECTED
	SCHEMAWITHDAEMONS
	SELECTIONSTREAMOPEN
	STMT_TOO_COMPLEX
	STREAMCLOSED
	Solution

	SUCCESS
	SYNTAX_ERROR
	SYSTEMERROR
	Solution

	TOO_MANY_VALUES
	TOO_FEW_VALUES
	TRANABORTED
	TRANSDISABLED
	Solution

	TRANSNOTALLOWED
	Solution

	TRANSOPENED
	Solution

	TYPEMISMATCH
	TYPENOTALLOWED
	UNEXPECTEDDUPLICATES
	UNLOADABLEOBJECT
	VERSIONMODE
	Solution

	WAITTIME
	WRITEWAITTIME

	Index
	A
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T

